On the nilpotency of locally pro-$p$ contraction groups

H. Glöckner and G. A. Willis have recently shown [2] that locally pro-$p$ contraction groups are nilpotent. The proof hinges on a fixed point result [2, Theorem B]: if the local field $\mathbb{F}_{p}(\!(t)\!)$ acts on its $d$-th power $\mathbb{F}_{p}(\!(t)\!)^{d}$ additively, continuously, and in an...

Full description

Saved in:
Bibliographic Details
Main Author: Beaumont, Alonso
Format: Article
Language:English
Published: Académie des sciences 2025-04-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.728/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839606779010351104
author Beaumont, Alonso
author_facet Beaumont, Alonso
author_sort Beaumont, Alonso
collection DOAJ
description H. Glöckner and G. A. Willis have recently shown [2] that locally pro-$p$ contraction groups are nilpotent. The proof hinges on a fixed point result [2, Theorem B]: if the local field $\mathbb{F}_{p}(\!(t)\!)$ acts on its $d$-th power $\mathbb{F}_{p}(\!(t)\!)^{d}$ additively, continuously, and in an appropriately equivariant manner, then the action has a non-zero fixed point. We provide a short proof of this theorem.
format Article
id doaj-art-d10e782a1a0a41a9aacadf29fdd379b9
institution Matheson Library
issn 1778-3569
language English
publishDate 2025-04-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-d10e782a1a0a41a9aacadf29fdd379b92025-08-01T07:25:08ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692025-04-01363G326727010.5802/crmath.72810.5802/crmath.728On the nilpotency of locally pro-$p$ contraction groupsBeaumont, Alonso0IRMAR, Université de Rennes, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, FranceH. Glöckner and G. A. Willis have recently shown [2] that locally pro-$p$ contraction groups are nilpotent. The proof hinges on a fixed point result [2, Theorem B]: if the local field $\mathbb{F}_{p}(\!(t)\!)$ acts on its $d$-th power $\mathbb{F}_{p}(\!(t)\!)^{d}$ additively, continuously, and in an appropriately equivariant manner, then the action has a non-zero fixed point. We provide a short proof of this theorem.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.728/
spellingShingle Beaumont, Alonso
On the nilpotency of locally pro-$p$ contraction groups
Comptes Rendus. Mathématique
title On the nilpotency of locally pro-$p$ contraction groups
title_full On the nilpotency of locally pro-$p$ contraction groups
title_fullStr On the nilpotency of locally pro-$p$ contraction groups
title_full_unstemmed On the nilpotency of locally pro-$p$ contraction groups
title_short On the nilpotency of locally pro-$p$ contraction groups
title_sort on the nilpotency of locally pro p contraction groups
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.728/
work_keys_str_mv AT beaumontalonso onthenilpotencyoflocallypropcontractiongroups