On the nilpotency of locally pro-$p$ contraction groups

H. Glöckner and G. A. Willis have recently shown [2] that locally pro-$p$ contraction groups are nilpotent. The proof hinges on a fixed point result [2, Theorem B]: if the local field $\mathbb{F}_{p}(\!(t)\!)$ acts on its $d$-th power $\mathbb{F}_{p}(\!(t)\!)^{d}$ additively, continuously, and in an...

Full description

Saved in:
Bibliographic Details
Main Author: Beaumont, Alonso
Format: Article
Language:English
Published: Académie des sciences 2025-04-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.728/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:H. Glöckner and G. A. Willis have recently shown [2] that locally pro-$p$ contraction groups are nilpotent. The proof hinges on a fixed point result [2, Theorem B]: if the local field $\mathbb{F}_{p}(\!(t)\!)$ acts on its $d$-th power $\mathbb{F}_{p}(\!(t)\!)^{d}$ additively, continuously, and in an appropriately equivariant manner, then the action has a non-zero fixed point. We provide a short proof of this theorem.
ISSN:1778-3569