High-Energy Electron Emission Controlled by Initial Phase in Linearly Polarized Ultra-Intense Laser Fields
Extensive numerical simulations were performed in MATLAB R2020b based on the classical nonlinear Thomson scattering theory and single-electron model, to systematically examine the influence of initial phase in tightly focused linearly polarized laser pulses on the radiation characteristics of multi-...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/15/13/7453 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Extensive numerical simulations were performed in MATLAB R2020b based on the classical nonlinear Thomson scattering theory and single-electron model, to systematically examine the influence of initial phase in tightly focused linearly polarized laser pulses on the radiation characteristics of multi-energy-level electrons. Through our research, we have found that phase variation from 0 to 2π induces an angular bifurcation of peak radiation intensity, generating polarization-aligned symmetric lobes with azimuthal invariance. Furthermore, the bimodal polar angle decreases with the increase of the initial energy. This phase-controllable bimodal distribution provides a new solution for far-field beam shaping. Significantly, high-harmonic intensity demonstrates π-periodic phase-dependent modulation. Meanwhile, the time-domain pulse width also exhibits 2π-cycle modulation, which is synchronized with the laser electric field period. Notably, electron energy increase enhances laser pulse peak intensity while compressing its duration. The above findings demonstrate that the precise control of the driving laser’s initial phase enables effective manipulation of the radiation’s spatial characteristics. |
---|---|
ISSN: | 2076-3417 |