Anomaly detection of smart grid stealing network attacks based on deep autoencoder

Existing anomaly detectors in AMIs suffer from shallow architectures, which impede their ability to capture temporal correlations and complex patterns in electricity consumption data, thus impact detection performance adversely. A deep (stacked) autoencoder structure based on Long Short-Term Memory...

Full description

Saved in:
Bibliographic Details
Main Authors: Huang Yan, Li Jincan, Yang Xiaqin, Li Pei, Li Zi
Format: Article
Language:Chinese
Published: National Computer System Engineering Research Institute of China 2024-02-01
Series:Dianzi Jishu Yingyong
Subjects:
Online Access:http://www.chinaaet.com/article/3000163482
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Existing anomaly detectors in AMIs suffer from shallow architectures, which impede their ability to capture temporal correlations and complex patterns in electricity consumption data, thus impact detection performance adversely. A deep (stacked) autoencoder structure based on Long Short-Term Memory (LSTM) with a sequence-to-sequence (seq2seq) configuration is proposed. The depth of the autoencoder architecture is beneficial for capturing complex data patterns, and the seq2seq LSTM model effectively utilizes the temporal sequential characteristics of the data. The performance of simple autoencoders, variational autoencoders, and Attention Enhanced Autoencoders (AEA) was studied, revealing that using the seq2seq structure in these three types of autoencoders results in superior detection performance compared to fully connected architectures. Simulation results demonstrate that the detector with an attention mechanism (AEA) achieves a 4%~21% higher detection rate and a 4%~13% lower false alarm rate compared to the best-performing existing detectors.
ISSN:0258-7998