Spatial Localization of Broadleaf Species in Mixed Forests in Northern Japan Using UAV Multi-Spectral Imagery and Mask R-CNN Model

Precise spatial localization of broadleaf species is crucial for efficient forest management and ecological studies. This study presents an advanced approach for segmenting and classifying broadleaf tree species, including Japanese oak (<i>Quercus crispula</i>), in mixed forests using mu...

Full description

Saved in:
Bibliographic Details
Main Authors: Nyo Me Htun, Toshiaki Owari, Satoshi N. Suzuki, Kenji Fukushi, Yuuta Ishizaki, Manato Fushimi, Yamato Unno, Ryota Konda, Satoshi Kita
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/13/2111
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Precise spatial localization of broadleaf species is crucial for efficient forest management and ecological studies. This study presents an advanced approach for segmenting and classifying broadleaf tree species, including Japanese oak (<i>Quercus crispula</i>), in mixed forests using multi-spectral imagery captured by unmanned aerial vehicles (UAVs) and deep learning. High-resolution UAV images, including RGB and NIR bands, were collected from two study sites in Hokkaido, Japan: Sub-compartment 97g in the eastern region and Sub-compartment 68E in the central region. A Mask Region-based Convolutional Neural Network (Mask R-CNN) framework was employed to recognize and classify single tree crowns based on annotated training data. The workflow incorporated UAV-derived imagery and crown annotations, supporting reliable model development and evaluation. Results showed that combining multi-spectral bands (RGB and NIR) with canopy height model (CHM) data significantly improved classification performance at both study sites. In Sub-compartment 97g, the RGB + NIR + CHM achieved a precision of 0.76, recall of 0.74, and F1-score of 0.75, compared to 0.73, 0.74, and 0.73 using RGB alone; 0.68, 0.70, and 0.66 with RGB + NIR; and 0.63, 0.67, and 0.63 with RGB + CHM. Similarly, at Sub-compartment 68E, the RGB + NIR + CHM attained a precision of 0.81, recall of 0.78, and F1-score of 0.80, outperforming RGB alone (0.79, 0.79, 0.78), RGB + NIR (0.75, 0.74, 0.72), and RGB + CHM (0.76, 0.75, 0.74). These consistent improvements across diverse forest conditions highlight the effectiveness of integrating spectral (RGB and NIR) and structural (CHM) data. These findings underscore the value of integrating UAV multi-spectral imagery with deep learning techniques for reliable, large-scale identification of tree species and forest monitoring.
ISSN:2072-4292