A Passive and Scalable High-Order Neuromorphic Circuit Enabled by Mott Memristors

In this study, VO2 Mott memristors have been successfully fabricated, leading to the proposal of a passive and scalable high-order neural circuit. This circuit consists of two coupled VO2 Mott memristors, two resistors, and three capacitors. The proposed high-order neural circuit demonstrates 11 dis...

Full description

Saved in:
Bibliographic Details
Main Authors: Zikang Lin, Xiaohui Wu, Shujing Zhao, Weihua Liu, Xin Li, Li Geng, Chuanyu Han
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Journal on Exploratory Solid-State Computational Devices and Circuits
Subjects:
Online Access:https://ieeexplore.ieee.org/document/11015876/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, VO2 Mott memristors have been successfully fabricated, leading to the proposal of a passive and scalable high-order neural circuit. This circuit consists of two coupled VO2 Mott memristors, two resistors, and three capacitors. The proposed high-order neural circuit demonstrates 11 distinct firing behaviors similar to those of biological neurons, along with controllable burst firing patterns. The spikes, interspike interval (ISI) within a burst, and the quiescence interval between bursts can be adjusted by varying the capacitance and resistance values. In addition, this circuit operates without the need for a bias supply or inductors, enhancing its scalability. This design not only improves circuit interconnection but also effectively reduces power consumption, providing a solid foundation for the development of spiking neural networks (SNNs).
ISSN:2329-9231