Influence of Clouds and Aerosols on Solar Irradiance and Application of Climate Indices in Its Monthly Forecast over China
Based on the Clouds and the Earth’s Radiant Energy System (CERES) satellite data from 2001 to 2023 and the climate indices from the National Oceanic and Atmospheric Administration (NOAA), this study analyzes the solar irradiance over mainland China and the impacts of clouds and aerosols on it and co...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Atmosphere |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4433/16/6/730 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Based on the Clouds and the Earth’s Radiant Energy System (CERES) satellite data from 2001 to 2023 and the climate indices from the National Oceanic and Atmospheric Administration (NOAA), this study analyzes the solar irradiance over mainland China and the impacts of clouds and aerosols on it and constructs monthly forecasting models to analyze the influence of climate indices on irradiance forecasts. The irradiance over mainland China shows a spatial distribution of being higher in the west and lower in the east. The influence of clouds on irradiance decreases from south to north, and the influence of aerosols is prominent in the east. The average explained variance of clouds on irradiance is 86.72%, which is much higher than that of aerosols on irradiance, 15.62%. Singular Value Decomposition (SVD) analysis shows a high correlation between the respective time series of irradiance and cloud influence, with the two fields having similar spatial patterns of opposite signs. The variation in solar irradiance can be attributed mainly to the influence of clouds. Empirical Orthogonal Function (EOF) analysis indicates that the variation in the first mode of irradiance is consistent in most parts of China, and its time coefficient is selected for monthly forecasting. Both the traditional multiple linear regression method and the Long Short-Term Memory (LSTM) network are used to construct monthly forecast models, with the preceding time coefficient of the first EOF mode and different climate indices as input. Compared with the multiple linear regression method, LSTM has a better forecasting skill. When the input length increases, the forecasting skill decreases. The inclusion of climate indices, such as the Indian Ocean Basin (IOB), El Nino–Southern Oscillation (ENSO), and Indian Ocean Dipole (IOD), can enhance the forecasting skill. Among these three indices, IOB has the most significant improvement effect. The research provides a basis for accurate forecasting of solar irradiance over China on monthly time scale. |
---|---|
ISSN: | 2073-4433 |