Spatiotemporal Assessment of Desertification in Wadi Fatimah
Over the past four decades, Wadi Fatimah in western Saudi Arabia has undergone significant environmental changes that have contributed to desertification. High-resolution spatial and temporal analyses are essential for monitoring the extent of desertification and understanding its driving factors. T...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Land |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-445X/14/6/1293 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Over the past four decades, Wadi Fatimah in western Saudi Arabia has undergone significant environmental changes that have contributed to desertification. High-resolution spatial and temporal analyses are essential for monitoring the extent of desertification and understanding its driving factors. This study aimed to assess the spatial distribution of desertification in Wadi Fatimah using satellite and climate data. Landsat imagery from 1984 to 2022 was employed to derive land surface temperature (LST) and assess vegetation trends using the Normalized Difference Vegetation Index (NDVI). Climate variables, including precipitation and evapotranspiration (ET), were sourced from the gridded TerraClimate dataset (1980–2022). LST estimates were validated using MOD11A2 products (2001–2022), while TerraClimate precipitation data were evaluated against observations from four local rain gauge stations: Wadi Muharam, Al-Seal Al-Kabeer, Makkah, and Baharah Al-Jadeedah. A Desertification Index (DI) was developed based on four variables: NDVI, LST, precipitation, and ET. Five regression models—ridge, lasso, elastic net, polynomial regression (degree 2), and random forest regression—were applied to evaluate the predictive capacity of these variables in explaining desertification dynamics. Among these, Random Forest and Polynomial Regression demonstrated superior predictive performance. The classification accuracy of the desertification map showed high overall accuracy and a strong Kappa coefficient. Results revealed extensive land degradation in the central and lower sub-basins of Wadi Fatimah, driven by both climatic stressors and anthropogenic pressures. LST exhibited a clear upward trend between 1984 and 2022, especially in the lower sub-basin. Precipitation and ET analysis confirmed the region’s arid climate, characterized by limited rainfall and high ET, which exacerbate vegetation stress and soil moisture deficits. Validation of LST with MOD11A2 data showed reasonable agreement, with RMSE values ranging from 2 °C to 6 °C and strong correlation coefficients across most years. Precipitation validation revealed low correlation at Al-Seal Al-Kabeer, moderate at Baharah Al-Jadeedah, and high correlations at Wadi Muharam and Makkah stations. These results highlight the importance of developing robust validation methods for gridded climate datasets, especially in data-sparse regions. Promoting sustainable land management and implementing targeted interventions are vital to mitigating desertification and preserving the environmental integrity of Wadi Fatimah. |
---|---|
ISSN: | 2073-445X |