An interpretable integrated machine learning framework for genomic selection
Although machine learning (ML) methods have shown growing promise for genomic selection (GS), several key challenges hinder their widespread application. In this study, we conducted a comprehensive analysis comparing the performance of various ML models, along with investigations into parameter opti...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-12-01
|
Series: | Smart Agricultural Technology |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2772375525003703 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|