Integrating Financial Knowledge for Explainable Stock Market Sentiment Analysis via Query-Guided Attention

Sentiment analysis is widely applied in the financial domain. However, financial documents, particularly those concerning the stock market, often contain complex and often ambiguous information, and their conclusions frequently deviate from actual market fluctuations. Thus, in comparison to sentimen...

Full description

Saved in:
Bibliographic Details
Main Authors: Chuanyang Hong, Qingyun He
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/12/6893
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sentiment analysis is widely applied in the financial domain. However, financial documents, particularly those concerning the stock market, often contain complex and often ambiguous information, and their conclusions frequently deviate from actual market fluctuations. Thus, in comparison to sentiment polarity, financial analysts are primarily concerned with understanding the underlying rationale behind an article’s judgment. Therefore, providing an explainable foundation in a document classification model has become a critical focus in the financial sentiment analysis field. In this study, we propose a novel approach integrating financial domain knowledge within a hierarchical BERT-GRU model via a Query-Guided Dual Attention (QGDA) mechanism. Driven by domain-specific queries derived from securities knowledge, QGDA directs attention to text segments relevant to financial concepts, offering interpretable concept-level explanations for sentiment predictions and revealing the ’why’ behind a judgment. Crucially, this explainability is validated by designing diverse query categories. Utilizing attention weights to identify dominant query categories for each document, a case study demonstrates that predictions guided by these dominant categories exhibit statistically significant higher consistency with actual stock market fluctuations (<i>p</i>-value = 0.0368). This approach not only confirms the utility of the provided explanations but also identifies which conceptual drivers are more indicative of market movements. While prioritizing interpretability, the proposed model also achieves a 2.3% F1 score improvement over baselines, uniquely offering both competitive performance and structured, domain-specific explainability. This provides a valuable tool for analysts seeking deeper and more transparent insights into market-related texts.
ISSN:2076-3417