Detecting Cancerous Regions in DCE MRI using Functional Data, XGboost and Neural Networks
Saved in:
Main Authors: | Povilas Treigys, Aleksas Vaitulevičius, Jolita Bernatavičienė, Jurgita Markevičiūtė, Ieva Naruševičiūtė, Mantas Trakymas |
---|---|
Format: | Article |
Language: | English |
Published: |
Polish Information Processing Society
2022-09-01
|
Series: | Annals of computer science and information systems |
Online Access: | https://annals-csis.org/Volume_32/drp/pdf/128.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Deep Neural Networks application for Cup-to-Disc ratio estimation in eye fundus images
by: Sandra Virbukaitė, et al.
Published: (2023-09-01) -
Assessment of tumor treatment response using active contrast encoding (ACE)-MRI: Comparison with conventional DCE-MRI.
by: Jin Zhang, et al.
Published: (2020-01-01) -
Value of DCE-MRI parameters for short-term prognosis of pharyngeal cancer after postoperative radiotherapy
by: SUN Shengjie, et al.
Published: (2025-06-01) -
Quantitative Classification of Uterine Myoma Perfusion on DCE-MRI: Retrospective Analysis of Data and Clinical Implications
by: Alan Bruszewski, et al.
Published: (2025-06-01) -
Heterogeneity Assessment of Breast Cancer Tumor Microenvironment: Multiparametric Quantitative Analysis with DCE-MRI and Discovery of Radiomics Biomarkers
by: Ma W, et al.
Published: (2025-07-01)