SegR3D: A Multi-Target 3D Visualization System for Realistic Volume Rendering of Meningiomas

Meningiomas are the most common primary intracranial tumors in adults. For most cases, surgical resection is effective in mitigating recurrence risk. Accurate visualization of meningiomas helps radiologists assess the distribution and volume of the tumor within the brain while assisting neurosurgeon...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiatian Zhang, Chunxiao Xu, Xinran Xu, Yajing Zhao, Lingxiao Zhao
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Journal of Imaging
Subjects:
Online Access:https://www.mdpi.com/2313-433X/11/7/216
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Meningiomas are the most common primary intracranial tumors in adults. For most cases, surgical resection is effective in mitigating recurrence risk. Accurate visualization of meningiomas helps radiologists assess the distribution and volume of the tumor within the brain while assisting neurosurgeons in preoperative planning. This paper introduces an innovative realistic 3D medical visualization system, namely SegR3D. It incorporates a 3D medical image segmentation pipeline, which preprocesses the data via semi-supervised learning-based multi-target segmentation to generate masks of the lesion areas. Subsequently, both the original medical images and segmentation masks are utilized as non-scalar volume data inputs into the realistic rendering pipeline. We propose a novel importance transfer function, assigning varying degrees of importance to different mask values to emphasize the areas of interest. Our rendering pipeline integrates physically based rendering with advanced illumination techniques to enhance the depiction of the structural characteristics and shapes of lesion areas. We conducted a user study involving medical practitioners to evaluate the effectiveness of SegR3D. Our experimental results indicate that SegR3D demonstrates superior efficacy in the visual analysis of meningiomas compared to conventional visualization methods.
ISSN:2313-433X