Dual-Branch Multi-Dimensional Attention Mechanism for Joint Facial Expression Detection and Classification
This paper addresses the central issue arising from the (SDAC) of facial expressions, namely, to balance the competing demands of good global features for detection, and fine features for good facial expression classifications by replacing the feature extraction part of the “neck” network in the fea...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/25/12/3815 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper addresses the central issue arising from the (SDAC) of facial expressions, namely, to balance the competing demands of good global features for detection, and fine features for good facial expression classifications by replacing the feature extraction part of the “neck” network in the feature pyramid network in the You Only Look Once X (YOLOX) framework with a novel architecture involving three attention mechanisms—batch, channel, and neighborhood—which respectively explores the three input dimensions—batch, channel, and spatial. Correlations across a batch of images in the individual path of the dual incoming paths are first extracted by a self attention mechanism in the batch dimension; these two paths are fused together to consolidate their information and then split again into two separate paths; the information along the channel dimension is extracted using a generalized form of channel attention, an adaptive graph channel attention, which provides each element of the incoming signal with a weight that is adapted to the incoming signal. The combination of these two paths, together with two skip connections from the input to the batch attention to the output of the adaptive channel attention, then passes into a residual network, with neighborhood attention to extract fine features in the spatial dimension. This novel dual path architecture has been shown experimentally to achieve a better balance between the competing demands in an SDAC problem than other competing approaches. Ablation studies enable the determination of the relative importance of these three attention mechanisms. Competitive results are obtained on two non-aligned face expression recognition datasets, RAF-DB and SFEW, when compared with other state-of-the-art methods. |
---|---|
ISSN: | 1424-8220 |