ON THE MODULAR SEQUENCE SPACES GENERATED BY THE CESÀRO MEAN
In this paper, the seminormed Ces\`aro difference sequence space \( \ell(\mathcal{F}_j, q, g, r, \mu, \Delta_{({s})}^{t}, \mathcal{C})\) is defined by using the generalized Orlicz function. Some algebraic and topological properties of the space \(\ell(\mathcal{F}_j, q, g, r, \mu, \Delta_{({s})}^{t...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Ural Branch of the Russian Academy of Sciences and Ural Federal University named after the first President of Russia B.N.Yeltsin, Krasovskii Institute of Mathematics and Mechanics
2024-12-01
|
Series: | Ural Mathematical Journal |
Subjects: | |
Online Access: | https://umjuran.ru/index.php/umj/article/view/664 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, the seminormed Ces\`aro difference sequence space \( \ell(\mathcal{F}_j, q, g, r, \mu, \Delta_{({s})}^{t}, \mathcal{C})\) is defined by using the generalized Orlicz function. Some algebraic and topological properties of the space \(\ell(\mathcal{F}_j, q, g, r, \mu, \Delta_{({s})}^{t}, \mathcal{C}) \) are investigated. Various inclusion relations for this sequence space are also studied. |
---|---|
ISSN: | 2414-3952 |