Water Basin Effect of Cofferdam Foundation Pit

This study addresses the water basin effect in the underwater sand layer of steel pipe pile cofferdams by integrating the concept from building foundation pits to cofferdam foundation pit analysis. A theoretical derivation is presented for the deformation evolution of steel pipe piles and bottom sea...

Full description

Saved in:
Bibliographic Details
Main Authors: Guofeng Li, Qinchao Zuo, Xiaoyan Zhou, Yanbo Hu, Ning Li
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/13/7374
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study addresses the water basin effect in the underwater sand layer of steel pipe pile cofferdams by integrating the concept from building foundation pits to cofferdam foundation pit analysis. A theoretical derivation is presented for the deformation evolution of steel pipe piles and bottom seals within the cofferdam pit. The cofferdam construction dewatering process is divided into four stages: riverbed excavation for bottom sealing, dewatering to the second support, dewatering to the third support, and dewatering to final bottom sealing. The steel pipe piles are modeled as single-span or multi-span cantilever continuous beam structures. Using the superposition principle, deformation evolution equations for these statically indeterminate structures across the four stages are derived. The bottom seal is simplified to a single-span end-fixed beam, and its deflection curve equation under uniform load and end-fixed additional load is obtained via the same principle. A case study based on the 6# pier steel pipe pile cofferdam of Xi’an Metro Line 10 Jingwei Bridge rail-road project employs FLAC3D for hydrological–mechanical coupling analysis of the entire dewatering process to validate the water basin effect. Results reveal a unique water basin effect in cofferdam foundation pits. Consistent horizontal deformation patterns of steel pipe piles occur across all working conditions, with maximum horizontal displacement (20.72 mm) observed at 14 m below the pile top during main pier construction completion. Close agreements are found among theoretical, numerical, and monitored deformation results for both steel pipe piles and bottom seals. Proper utilization of the formed water basin effect can effectively enhance cofferdam stability. These findings offer insights for similar engineering applications.
ISSN:2076-3417