DCMC-UNet: A Novel Segmentation Model for Carbon Traces in Oil-Immersed Transformers Improved with Dynamic Feature Fusion and Adaptive Illumination Enhancement
For large oil-immersed transformers, their metal-enclosed structure poses significant challenges for direct visual inspection of internal defects. To ensure the effective detection of internal insulation defects, this study employs a self-developed micro-robot for internal visual inspection. Given t...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/25/13/3904 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For large oil-immersed transformers, their metal-enclosed structure poses significant challenges for direct visual inspection of internal defects. To ensure the effective detection of internal insulation defects, this study employs a self-developed micro-robot for internal visual inspection. Given the substantial morphological and dimensional variations of target defects (e.g., carbon traces produced by surface discharge inside the transformer), the intelligent and efficient extraction of carbon trace features from complex backgrounds becomes critical for robotic inspection. To address these challenges, we propose the DCMC-UNet, a semantic segmentation model for carbon traces containing adaptive illumination enhancement and dynamic feature fusion. For blurred carbon trace images caused by unstable light reflection and illumination in transformer oil, an improved CLAHE algorithm is developed, incorporating learnable parameters to balance luminance and contrast while enhancing edge features of carbon traces. To handle the morphological diversity and edge complexity of carbon traces, a dynamic deformable encoder (DDE) was integrated into the encoder, leveraging deformable convolutional kernels to improve carbon trace feature extraction. An edge-aware decoder (EAD) was integrated into the decoder, which extracts edge details from predicted segmentation maps and fuses them with encoded features to enrich edge features. To mitigate the semantic gap between the encoder and the decoder, we replace the standard skip connection with a cross-level attention connection fusion layer (CLFC), enhancing the multi-scale fusion of morphological and edge features. Furthermore, a multi-scale atrous feature aggregation module (MAFA) is designed in the neck to enhance the integration of deep semantic and shallow visual features, improving multi-dimensional feature fusion. Experimental results demonstrate that DCMC-UNet outperforms U-Net, U-Net++, and other benchmarks in carbon trace segmentation. For the transformer carbon trace dataset, it achieves better segmentation than the baseline U-Net, with an improved mIoU of 14.04%, Dice of 10.87%, pixel accuracy (P) of 10.97%, and overall accuracy (Acc) of 5.77%. The proposed model provides reliable technical support for surface discharge intensity assessment and insulation condition evaluation in oil-immersed transformers. |
---|---|
ISSN: | 1424-8220 |