The norming sets of multilinear forms on a certain normed space $\mathbb{R}^n$
Let $n, m\in \mathbb{N}, n, m\geq 2$ and $E$ a Banach space. An element $(x_1, \ldots, x_n)\in E^n$ is called a~norming point of $T\in {\mathcal L}(^n E)$ if $\|x_1\|=\cdots=\|x_n\|=1$ and $|T(x_1, \ldots, x_n)|=\|T\|,$ where ${\mathcal L}(^n E)$ denotes the space of all continuous $n$-linear forms...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | German |
Published: |
Ivan Franko National University of Lviv
2024-12-01
|
Series: | Математичні Студії |
Subjects: | |
Online Access: | http://matstud.org.ua/ojs/index.php/matstud/article/view/539 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|