A Data Reconstruction Method for Inspection Mode in GBSAR Monitoring Using Sage–Husa Adaptive Kalman Filtering and RTS Smoothing

Ground-based synthetic aperture radar (GBSAR) has been widely used in the fields of early warning of geologic hazards and deformation monitoring of engineering structures due to its characteristics of high spatial resolution, zero spatial baseline, and short revisit period. However, in the continuou...

Full description

Saved in:
Bibliographic Details
Main Authors: Yaolong Qi, Jialiang Guo, Jiaxin Hui, Ting Hou, Pingping Huang, Weixian Tan, Wei Xu
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/13/3937
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ground-based synthetic aperture radar (GBSAR) has been widely used in the fields of early warning of geologic hazards and deformation monitoring of engineering structures due to its characteristics of high spatial resolution, zero spatial baseline, and short revisit period. However, in the continuous monitoring process of GBSAR, due to the sudden failure of radar equipment, such as power failure, or the influence of alternating work between multiple regions, it often leads to discontinuous data collection, and this problem caused by missing data is collectively called “inspection mode”. The problem of missing data in the inspection mode not only destroys the spatial and temporal continuity of the data but also affects the accuracy of the subsequent deformation analysis. In order to solve this problem, in this paper, we propose a data reconstruction method that combines Sage–Husa Kalman adaptive filtering and the Rauch–Tung–Striebel (RTS) smoothing algorithm. The method is based on the principle of Kalman filtering and solves the problem of “model mismatch” caused by the fixed noise statistics of traditional Kalman filtering by dynamically adjusting the noise covariance to adapt to the non-stationary characteristics of the observed data. Subsequently, the Rauch–Tung–Striebel (RTS) smoothing algorithm is used to process the preliminary filtering results to eliminate the cumulative error during the period of missing data and recover the complete and smooth deformation time series. The experimental and simulation results show that this method successfully restores the spatial and temporal continuity of the inspection data, thus improving the overall accuracy and stability of deformation monitoring.
ISSN:1424-8220