<i>g</i>-Factor Isotopic Shifts: Theoretical Limits on New Physics Search

The isotopic shift of the bound-electron <i>g</i> factor in highly charged ions (HCI) provides a sensitive probe for testing physics beyond the Standard Model, particularly through interactions mediated by a hypothetical scalar boson. In this study, we analyze the sensitivity of this met...

Full description

Saved in:
Bibliographic Details
Main Authors: Dmitry S. Akulov, Rinat R. Abdullin, Dmitry V. Chubukov, Dmitry A. Glazov, Andrey V. Volotka
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Atoms
Subjects:
Online Access:https://www.mdpi.com/2218-2004/13/6/52
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The isotopic shift of the bound-electron <i>g</i> factor in highly charged ions (HCI) provides a sensitive probe for testing physics beyond the Standard Model, particularly through interactions mediated by a hypothetical scalar boson. In this study, we analyze the sensitivity of this method within the Higgs portal framework, focusing on the uncertainties introduced by quantum electrodynamics corrections, including finite nuclear size, nuclear recoil, and nuclear polarization effects. All calculations are performed for the ground-state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mi>s</mi></mrow></semantics></math></inline-formula> configuration of hydrogen-like HCI, where theoretical predictions are most accurate. Using selected isotope pairs (e.g., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>He</mi><mrow><mn>4</mn><mo>/</mo><mn>6</mn></mrow></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>Ne</mi><mrow><mn>20</mn><mo>/</mo><mn>22</mn></mrow></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>Ca</mi><mrow><mn>40</mn><mo>/</mo><mn>48</mn></mrow></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>Sn</mi><mrow><mn>120</mn><mo>/</mo><mn>132</mn></mrow></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>Th</mi><mrow><mn>230</mn><mo>/</mo><mn>232</mn></mrow></msup></semantics></math></inline-formula>), we demonstrate that the dominant source of uncertainty arises from finite nuclear size corrections, which currently limit the precision of new physics searches. Our results indicate that the sensitivity of this method decreases with increasing atomic number. These findings highlight the necessity of improved nuclear radius measurements and the development of alternative approaches, such as the special differences method, to enable virtually the detection of fifth-force interactions.
ISSN:2218-2004