Non-Fungible Programs
The greatest advantage that Web3 applications offer over Web 2.0 is the evolution of the data access layer. Opaque, centralized services that compelled trust from users are replaced by trustless, decentralized systems of smart contracts. However, the public nature of blockchain-based databases,...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University Library System, University of Pittsburgh
2025-08-01
|
Series: | Ledger |
Subjects: | |
Online Access: | http://ledger.pitt.edu/ojs/ledger/article/view/406 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The greatest advantage that Web3 applications offer over Web 2.0 is the evolution of the data access layer. Opaque, centralized services that compelled trust from users are replaced by trustless, decentralized systems of smart contracts. However, the public nature of blockchain-based databases, on which smart contracts transact, has typically presented a challenge for applications that depend on data privacy or that rely on participants having incomplete information. This has changed with the introduction of confidential smart contract networks that encrypt the memory state of active contracts as well as their databases stored on-chain. With confidentiality, contracts can more readily implement novel interaction mechanisms that were previously infeasible. Meanwhile, in both Web 2.0 and Web3 applications, the user interface continues to play a crucial role in translating user intent into actionable requests. In many cases, developers have shifted intelligence and autonomy onto the client, leveraging web technologies for computation, graphics, and networking. Web3’s reliance on such frontends has revealed a pain point though, namely that decentralized applications are not accessible to end users without a persistent host serving the web application. Here we introduce the Non-Fungible Program (NFP) model for developing self-contained frontend applications that are distributed via blockchain, powered by web technology, backed by encrypted databases, and controlled by confidential smart contracts. Access to frontend code, as well as backend services, is controlled and guaranteed by smart contracts according to the NFT ownership model, eliminating the need for a separate host. By extension, NFP applications bring interactivity to token owners and enable new functionalities—such as authorization mechanisms for oracles, supplementary web services, and overlay networks—in a secure manner. In addition to releasing an open-source software development kit for building NFPs, we demonstrate the utility of NFPs with an interactive Bayesian game implemented on Secret Network.
|
---|---|
ISSN: | 2379-5980 |