Rose-Mamba-YOLO: an enhanced framework for efficient and accurate greenhouse rose monitoring
Accurately detecting roses in UAV-captured greenhouse imagery presents significant challenges due to occlusions, scale variability, and complex environmental conditions. To address these issues, this study introduces ROSE-MAMBA-YOLO, a hybrid detection framework that combines the efficiency of YOLOv...
Saved in:
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2025-06-01
|
Series: | Frontiers in Plant Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fpls.2025.1607582/full |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Accurately detecting roses in UAV-captured greenhouse imagery presents significant challenges due to occlusions, scale variability, and complex environmental conditions. To address these issues, this study introduces ROSE-MAMBA-YOLO, a hybrid detection framework that combines the efficiency of YOLOv11 with Mamba-inspired state-space modeling to enhance feature extraction, multi-scale fusion, and contextual representation. The model achieves a mAP@50 of 87.5%, precision of 90.4%, and recall of 83.1%, surpassing state-of-the-art object detection models. Extensive evaluations validate its robustness against degraded input data and adaptability across diverse datasets. These results demonstrate the applicability of ROSE-MAMBA-YOLO in complex agricultural scenarios. With its lightweight design and real-time capability, the framework provides a scalable and efficient solution for UAV-based rose monitoring, and offers a practical approach for precision floriculture. It sets the stage for integrating advanced detection technologies into real-time crop monitoring systems, advancing intelligent, data-driven agriculture. |
---|---|
ISSN: | 1664-462X |