Electronic Structure of the Ground and Low-Lying States of MoLi

Molybdenum lithium compounds and materials are being researched and applied in cutting-edge industries; however, their bonding has not been explored in a systematic way. The present study investigates the MoLi molecule, to shed light on its bonding. Specifically, the electronic structure and bonding...

Full description

Saved in:
Bibliographic Details
Main Authors: Constantinos Demetriou, Demeter Tzeli
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/30/13/2874
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839631693412040704
author Constantinos Demetriou
Demeter Tzeli
author_facet Constantinos Demetriou
Demeter Tzeli
author_sort Constantinos Demetriou
collection DOAJ
description Molybdenum lithium compounds and materials are being researched and applied in cutting-edge industries; however, their bonding has not been explored in a systematic way. The present study investigates the MoLi molecule, to shed light on its bonding. Specifically, the electronic structure and bonding of the ground and 40 low-lying states of the MoLi molecule are explored, employing multireference methodologies, i.e., CASSCF and MRCISD(+Q) in conjunction with the aug-cc-pV5z(-PP) basis set. Bond distances, dissociation energies, dipole moments as well as common spectroscopic constants are given, while the potential energy curves are plotted. For the ground state, X<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mrow><mo>Σ</mo></mrow><mrow><mo>+</mo></mrow><none></none><mprescripts></mprescripts><none></none><mn>6</mn></mmultiscripts></mrow></semantics></math></inline-formula>, it is found that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi mathvariant="normal">e</mi></mrow></msub></mrow></semantics></math></inline-formula> = 2.708 Å, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi mathvariant="normal">e</mi></mrow></msub></mrow></semantics></math></inline-formula> = 24.1 kcal/mol, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi mathvariant="normal">e</mi></mrow></msub></mrow></semantics></math></inline-formula> = 316.8 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi mathvariant="normal">e</mi></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mi mathvariant="normal">e</mi></mrow></msub></mrow></semantics></math></inline-formula> = 2.11 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>, and <i>μ</i> = 3.63 D. Overall, the calculated states present a variety of bonds, from weak van der Waals up to the formation of 2.5 bonds. The dissociation energies of the calculated states range from 2.3 kcal/mol (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">a</mi><mmultiscripts><mrow><msup><mrow><mo>Σ</mo></mrow><mrow><mo>+</mo></mrow></msup></mrow><none></none><none></none><mprescripts></mprescripts><none></none><mrow><mn>8</mn></mrow></mmultiscripts></mrow></semantics></math></inline-formula>) to 34.7 (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">c</mi><mmultiscripts><mrow><mo>Π</mo></mrow><none></none><none></none><mprescripts></mprescripts><none></none><mrow><mn>4</mn></mrow></mmultiscripts></mrow></semantics></math></inline-formula>), while the bond distances range from 2.513 Å to 3.354 Å. Finally, dipole moment values up to 3.72 D are calculated. In most states, a 2s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mrow><mn>2</mn><mi mathvariant="normal">p</mi></mrow></mrow><mrow><mi mathvariant="normal">z</mi></mrow></msub></mrow></semantics></math></inline-formula> hybridization on Li and a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mrow><mn>4</mn><mi mathvariant="normal">d</mi></mrow></mrow><mrow><msup><mrow><mi mathvariant="normal">z</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></mrow></semantics></math></inline-formula>5s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mrow><mn>5</mn><mi mathvariant="normal">p</mi></mrow></mrow><mrow><mi mathvariant="normal">z</mi></mrow></msub></mrow></semantics></math></inline-formula> or 5s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mrow><mn>5</mn><mi mathvariant="normal">p</mi></mrow></mrow><mrow><mi mathvariant="normal">z</mi></mrow></msub></mrow></semantics></math></inline-formula> hybridization on Mo are found. Moreover, it is observed that the excited Li(<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mrow><mi mathvariant="normal">P</mi></mrow><none></none><none></none><mprescripts></mprescripts><none></none><mrow><mn>2</mn></mrow></mmultiscripts></mrow></semantics></math></inline-formula>) atom forms the shortest bonds because its empty <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mrow><mn>2</mn><mi mathvariant="normal">s</mi></mrow></mrow><mrow><mn>0</mn></mrow></msup></mrow></semantics></math></inline-formula> orbital can easily accept electrons, resulting in a strong σ dative bond. Finally, the present work highlights the exceptional ability of lithium atoms to participate in a variety of bonding schemes, and it could provide the opening gate for further investigation of this species or associated material and complexes.
format Article
id doaj-art-c0c6cb1645e74c0fb95936bccb3fd365
institution Matheson Library
issn 1420-3049
language English
publishDate 2025-07-01
publisher MDPI AG
record_format Article
series Molecules
spelling doaj-art-c0c6cb1645e74c0fb95936bccb3fd3652025-07-11T14:41:17ZengMDPI AGMolecules1420-30492025-07-013013287410.3390/molecules30132874Electronic Structure of the Ground and Low-Lying States of MoLiConstantinos Demetriou0Demeter Tzeli1Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, GreeceLaboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, GreeceMolybdenum lithium compounds and materials are being researched and applied in cutting-edge industries; however, their bonding has not been explored in a systematic way. The present study investigates the MoLi molecule, to shed light on its bonding. Specifically, the electronic structure and bonding of the ground and 40 low-lying states of the MoLi molecule are explored, employing multireference methodologies, i.e., CASSCF and MRCISD(+Q) in conjunction with the aug-cc-pV5z(-PP) basis set. Bond distances, dissociation energies, dipole moments as well as common spectroscopic constants are given, while the potential energy curves are plotted. For the ground state, X<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mrow><mo>Σ</mo></mrow><mrow><mo>+</mo></mrow><none></none><mprescripts></mprescripts><none></none><mn>6</mn></mmultiscripts></mrow></semantics></math></inline-formula>, it is found that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi mathvariant="normal">e</mi></mrow></msub></mrow></semantics></math></inline-formula> = 2.708 Å, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi mathvariant="normal">e</mi></mrow></msub></mrow></semantics></math></inline-formula> = 24.1 kcal/mol, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi mathvariant="normal">e</mi></mrow></msub></mrow></semantics></math></inline-formula> = 316.8 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi mathvariant="normal">e</mi></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mi mathvariant="normal">e</mi></mrow></msub></mrow></semantics></math></inline-formula> = 2.11 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>, and <i>μ</i> = 3.63 D. Overall, the calculated states present a variety of bonds, from weak van der Waals up to the formation of 2.5 bonds. The dissociation energies of the calculated states range from 2.3 kcal/mol (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">a</mi><mmultiscripts><mrow><msup><mrow><mo>Σ</mo></mrow><mrow><mo>+</mo></mrow></msup></mrow><none></none><none></none><mprescripts></mprescripts><none></none><mrow><mn>8</mn></mrow></mmultiscripts></mrow></semantics></math></inline-formula>) to 34.7 (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">c</mi><mmultiscripts><mrow><mo>Π</mo></mrow><none></none><none></none><mprescripts></mprescripts><none></none><mrow><mn>4</mn></mrow></mmultiscripts></mrow></semantics></math></inline-formula>), while the bond distances range from 2.513 Å to 3.354 Å. Finally, dipole moment values up to 3.72 D are calculated. In most states, a 2s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mrow><mn>2</mn><mi mathvariant="normal">p</mi></mrow></mrow><mrow><mi mathvariant="normal">z</mi></mrow></msub></mrow></semantics></math></inline-formula> hybridization on Li and a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mrow><mn>4</mn><mi mathvariant="normal">d</mi></mrow></mrow><mrow><msup><mrow><mi mathvariant="normal">z</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></mrow></semantics></math></inline-formula>5s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mrow><mn>5</mn><mi mathvariant="normal">p</mi></mrow></mrow><mrow><mi mathvariant="normal">z</mi></mrow></msub></mrow></semantics></math></inline-formula> or 5s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mrow><mn>5</mn><mi mathvariant="normal">p</mi></mrow></mrow><mrow><mi mathvariant="normal">z</mi></mrow></msub></mrow></semantics></math></inline-formula> hybridization on Mo are found. Moreover, it is observed that the excited Li(<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mrow><mi mathvariant="normal">P</mi></mrow><none></none><none></none><mprescripts></mprescripts><none></none><mrow><mn>2</mn></mrow></mmultiscripts></mrow></semantics></math></inline-formula>) atom forms the shortest bonds because its empty <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mrow><mn>2</mn><mi mathvariant="normal">s</mi></mrow></mrow><mrow><mn>0</mn></mrow></msup></mrow></semantics></math></inline-formula> orbital can easily accept electrons, resulting in a strong σ dative bond. Finally, the present work highlights the exceptional ability of lithium atoms to participate in a variety of bonding schemes, and it could provide the opening gate for further investigation of this species or associated material and complexes.https://www.mdpi.com/1420-3049/30/13/2874diatomic moleculemulti-reference configuration interactionMoLichemical bondingelectronic structure
spellingShingle Constantinos Demetriou
Demeter Tzeli
Electronic Structure of the Ground and Low-Lying States of MoLi
Molecules
diatomic molecule
multi-reference configuration interaction
MoLi
chemical bonding
electronic structure
title Electronic Structure of the Ground and Low-Lying States of MoLi
title_full Electronic Structure of the Ground and Low-Lying States of MoLi
title_fullStr Electronic Structure of the Ground and Low-Lying States of MoLi
title_full_unstemmed Electronic Structure of the Ground and Low-Lying States of MoLi
title_short Electronic Structure of the Ground and Low-Lying States of MoLi
title_sort electronic structure of the ground and low lying states of moli
topic diatomic molecule
multi-reference configuration interaction
MoLi
chemical bonding
electronic structure
url https://www.mdpi.com/1420-3049/30/13/2874
work_keys_str_mv AT constantinosdemetriou electronicstructureofthegroundandlowlyingstatesofmoli
AT demetertzeli electronicstructureofthegroundandlowlyingstatesofmoli