Multi-Scenario Simulation of Ecosystem Service Value in Xiangjiang River Basin, China, Based on the PLUS Model
With rapid socio-economic development, excessive anthropogenic consumption and the exploitation of natural resources have impaired the self-healing, supply, and carrying capacities of ecosystems. The assessment and prediction of ecosystem service values (ESVs) are crucial for the coordinated develop...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Land |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-445X/14/7/1482 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With rapid socio-economic development, excessive anthropogenic consumption and the exploitation of natural resources have impaired the self-healing, supply, and carrying capacities of ecosystems. The assessment and prediction of ecosystem service values (ESVs) are crucial for the coordinated development of ecology and economy. This research examines the Xiangjiang River Basin and combines land use data from 1995 to 2020, Landsat images, meteorological data, and socio-economic data. These data are incorporated into the PLUS model to simulate land use patterns in 2035 under the following five scenarios: natural development, economic development, farmland protection, ecological protection, and coordinated development. Additionally, this research analyzes the dynamics of land use and changes in ESVs in the Xiangjiang River Basin. The results show that between 1995 and 2020 in the Xiangjiang River Basin, urbanization accelerated, human activities intensified, and the construction land area expanded significantly, while the areas of forest, farmland, and grassland decreased continuously. Based on multi-scenario simulations, the ESV showed the largest and smallest declines under economic development and ecological protection scenarios, respectively. This results from the economic development scenario inducing a rapid expansion in construction land. In contrast, construction land expansion was restricted under the ecological protection scenario, because the ecological functions of forests and water bodies were prioritized. This research proposes land use strategies to coordinate ecological protection and economic development to provide a basis for sustainable development in the Xiangjiang River Basin and constructing a national ecological security barrier, as well as offer Chinese experience and local cases for global ecological environment governance. |
---|---|
ISSN: | 2073-445X |