Noninvasive Continuous Glucose Monitoring Using Multimodal Near-Infrared, Temperature, and Pressure Signals on the Earlobe

This study investigates a noninvasive continuous glucose monitoring (NI-CGM) system optimized for earlobe application, leveraging the site’s anatomical advantages—absence of bone, muscle, and thick skin—for enhanced optical transmission. The system integrates multimodal sensing, combining near-infra...

Full description

Saved in:
Bibliographic Details
Main Authors: Jongdeog Kim, Bong Kyu Kim, Mi-Ryong Park, Hyoyoung Cho, Chul Huh
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Biosensors
Subjects:
Online Access:https://www.mdpi.com/2079-6374/15/7/406
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates a noninvasive continuous glucose monitoring (NI-CGM) system optimized for earlobe application, leveraging the site’s anatomical advantages—absence of bone, muscle, and thick skin—for enhanced optical transmission. The system integrates multimodal sensing, combining near-infrared (NIR) diffuse transmission with temperature and pressure sensors. A novel Multi-Wavelength Slope Efficiency Near-Infrared Spectroscopy (MW-SE-NIRS) method is introduced, enhancing noise robustness through the slope efficiency-based parameterization of NIR signal dynamics. By employing three NIR wavelengths with distinct scattering and absorption properties, the method improves glucose detection reliability, addressing tissue heterogeneity and physiological noise in noninvasive monitoring. To validate the feasibility, a pilot clinical trial enrolled five participants with normal or pre-diabetic glucose profiles. Continuous glucose data capturing pre- and postprandial variations were analyzed using a 1D convolutional neural network (Conv1D). For three subjects under stable physiological conditions, the model achieved 97.0% Clarke error grid (CEG) A-Zone accuracy and a mean absolute relative difference (MARD) of 5.2%. Across all participants, results showed 90.9% CEG A-Zone accuracy and a MARD of 8.4%, with performance variations linked to individual factors such as earlobe thickness variability and physical activity. These outcomes demonstrate the potential of the MW-SE-NIRS system for noninvasive glucose monitoring and highlight the importance of future work on personalized modeling, sensor optimization, and larger-scale clinical validation.
ISSN:2079-6374