The Design of CMOS-Compatible Plasmonic Waveguides for Intra-Chip Communication

A CMOS-compatible plasmonic waveguide with a metal or metal-like strip sandwiched in-between dielectrics has been proposed for intra-chip communication in the more-than-Moore era. A sequence of numerical models has been presented to evaluate the plasmonic waveguide performance. For device-level cons...

Full description

Saved in:
Bibliographic Details
Main Authors: Yan Liu, Lu Ding, Yu Cao, Dongyang Wan, Guanghui Yuan, Baohu Huang, Aaron Voon-Yew Thean, Ting Mei, Thirumalai Venkatesan, Christian A. Nijhuis, Soojin Chua
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9198892/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839644689879269376
author Yan Liu
Lu Ding
Yu Cao
Dongyang Wan
Guanghui Yuan
Baohu Huang
Aaron Voon-Yew Thean
Ting Mei
Thirumalai Venkatesan
Christian A. Nijhuis
Soojin Chua
author_facet Yan Liu
Lu Ding
Yu Cao
Dongyang Wan
Guanghui Yuan
Baohu Huang
Aaron Voon-Yew Thean
Ting Mei
Thirumalai Venkatesan
Christian A. Nijhuis
Soojin Chua
author_sort Yan Liu
collection DOAJ
description A CMOS-compatible plasmonic waveguide with a metal or metal-like strip sandwiched in-between dielectrics has been proposed for intra-chip communication in the more-than-Moore era. A sequence of numerical models has been presented to evaluate the plasmonic waveguide performance. For device-level consideration, we demonstrated through simulations that Cu (1450&#x00A0;nm pitch) and PLD-TiN (900&#x00A0;nm pitch) plasmonic waveguides symmetrically sandwiched by SiO<sub>2</sub> with much smaller and hence denser interconnects, are promising candidates for use in global wires for the asynchronous communication. This design of plasmonic waveguide can bridge the CMOS circuitry and high-speed communication at optical frequencies within chip. For a system-level assessment, both of them have the same bandwidth throughput of &#x223C;19.8 Gbps. The other performance parameters of Cu and PLD-TiN plasmonic waveguides are respectively, signal latency of &#x223C;<inline-formula><tex-math notation="LaTeX">$0.18\text{ ps}\ $</tex-math></inline-formula>and <inline-formula><tex-math notation="LaTeX">$0.19\text{ ps},$</tex-math></inline-formula> energy dissipation per computing bit of &#x223C;<inline-formula><tex-math notation="LaTeX">$2.5 \times {10^{ - 3}}{\rm{\ fJ}}/{\rm{bit}}$</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">$3.8 \times {10^{ - 3}}{\rm{\ fJ}}/{\rm{bit}}$</tex-math></inline-formula>, and 25&#x0025; crosstalk coupling length of <inline-formula><tex-math notation="LaTeX">$155{\rm{\ \mu m}}$</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">$125{\rm{\ \mu}} \text{m}$</tex-math></inline-formula>. These findings suggest that plasmonic waveguide for intra-chip communication surpass those of existing electronic interconnects for all the categories of performance parameters.
format Article
id doaj-art-bcd193d7adf242b39d002f3b5e1c5af8
institution Matheson Library
issn 1943-0655
language English
publishDate 2020-01-01
publisher IEEE
record_format Article
series IEEE Photonics Journal
spelling doaj-art-bcd193d7adf242b39d002f3b5e1c5af82025-07-01T23:55:38ZengIEEEIEEE Photonics Journal1943-06552020-01-0112511010.1109/JPHOT.2020.30241199198892The Design of CMOS-Compatible Plasmonic Waveguides for Intra-Chip CommunicationYan Liu0https://orcid.org/0000-0003-4969-1888Lu Ding1https://orcid.org/0000-0001-8087-2738Yu Cao2Dongyang Wan3https://orcid.org/0000-0001-6810-2183Guanghui Yuan4Baohu Huang5https://orcid.org/0000-0002-2396-3980Aaron Voon-Yew Thean6Ting Mei7https://orcid.org/0000-0001-7756-040XThirumalai Venkatesan8Christian A. Nijhuis9Soojin Chua10Department of Electrical and Computer Engineering, National University of Singapore, SingaporeSingaporeInstitute of Materials Research and Engineering, A<sup>&#x002A;</sup>STAR (Agency for Science, Technology and Research), SingaporeSingaporeDepartment of Electrical and Computer Engineering, National University of Singapore, SingaporeSingaporeDepartment of Electrical and Computer Engineering, National University of Singapore, SingaporeSingaporeCentre for Disruptive Photonic Technologies, The Photonic Institute, School of Physical and Mathematical Sciences, Nanyang Technological University, SingaporeSingaporeDepartment of Electrical and Computer Engineering, National University of Singapore, SingaporeSingaporeDepartment of Electrical and Computer Engineering, National University of Singapore, SingaporeSingaporeKey Laboratory of Space Applied Physics and Chemistry, Ministry of Education; and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi&#x0027;an, ChinaNUSNNI-Nanocore, National University of Singapore, SingaporeSingaporeDepartment of Chemistry, National University of Singapore, SingaporeSingaporeDepartment of Electrical and Computer Engineering, National University of Singapore, SingaporeSingaporeA CMOS-compatible plasmonic waveguide with a metal or metal-like strip sandwiched in-between dielectrics has been proposed for intra-chip communication in the more-than-Moore era. A sequence of numerical models has been presented to evaluate the plasmonic waveguide performance. For device-level consideration, we demonstrated through simulations that Cu (1450&#x00A0;nm pitch) and PLD-TiN (900&#x00A0;nm pitch) plasmonic waveguides symmetrically sandwiched by SiO<sub>2</sub> with much smaller and hence denser interconnects, are promising candidates for use in global wires for the asynchronous communication. This design of plasmonic waveguide can bridge the CMOS circuitry and high-speed communication at optical frequencies within chip. For a system-level assessment, both of them have the same bandwidth throughput of &#x223C;19.8 Gbps. The other performance parameters of Cu and PLD-TiN plasmonic waveguides are respectively, signal latency of &#x223C;<inline-formula><tex-math notation="LaTeX">$0.18\text{ ps}\ $</tex-math></inline-formula>and <inline-formula><tex-math notation="LaTeX">$0.19\text{ ps},$</tex-math></inline-formula> energy dissipation per computing bit of &#x223C;<inline-formula><tex-math notation="LaTeX">$2.5 \times {10^{ - 3}}{\rm{\ fJ}}/{\rm{bit}}$</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">$3.8 \times {10^{ - 3}}{\rm{\ fJ}}/{\rm{bit}}$</tex-math></inline-formula>, and 25&#x0025; crosstalk coupling length of <inline-formula><tex-math notation="LaTeX">$155{\rm{\ \mu m}}$</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">$125{\rm{\ \mu}} \text{m}$</tex-math></inline-formula>. These findings suggest that plasmonic waveguide for intra-chip communication surpass those of existing electronic interconnects for all the categories of performance parameters.https://ieeexplore.ieee.org/document/9198892/CMOS-compatible plasmonic waveguideLong-range SPPhigh integration densitySignal latencyEnergy dissipationLink throughput
spellingShingle Yan Liu
Lu Ding
Yu Cao
Dongyang Wan
Guanghui Yuan
Baohu Huang
Aaron Voon-Yew Thean
Ting Mei
Thirumalai Venkatesan
Christian A. Nijhuis
Soojin Chua
The Design of CMOS-Compatible Plasmonic Waveguides for Intra-Chip Communication
IEEE Photonics Journal
CMOS-compatible plasmonic waveguide
Long-range SPP
high integration density
Signal latency
Energy dissipation
Link throughput
title The Design of CMOS-Compatible Plasmonic Waveguides for Intra-Chip Communication
title_full The Design of CMOS-Compatible Plasmonic Waveguides for Intra-Chip Communication
title_fullStr The Design of CMOS-Compatible Plasmonic Waveguides for Intra-Chip Communication
title_full_unstemmed The Design of CMOS-Compatible Plasmonic Waveguides for Intra-Chip Communication
title_short The Design of CMOS-Compatible Plasmonic Waveguides for Intra-Chip Communication
title_sort design of cmos compatible plasmonic waveguides for intra chip communication
topic CMOS-compatible plasmonic waveguide
Long-range SPP
high integration density
Signal latency
Energy dissipation
Link throughput
url https://ieeexplore.ieee.org/document/9198892/
work_keys_str_mv AT yanliu thedesignofcmoscompatibleplasmonicwaveguidesforintrachipcommunication
AT luding thedesignofcmoscompatibleplasmonicwaveguidesforintrachipcommunication
AT yucao thedesignofcmoscompatibleplasmonicwaveguidesforintrachipcommunication
AT dongyangwan thedesignofcmoscompatibleplasmonicwaveguidesforintrachipcommunication
AT guanghuiyuan thedesignofcmoscompatibleplasmonicwaveguidesforintrachipcommunication
AT baohuhuang thedesignofcmoscompatibleplasmonicwaveguidesforintrachipcommunication
AT aaronvoonyewthean thedesignofcmoscompatibleplasmonicwaveguidesforintrachipcommunication
AT tingmei thedesignofcmoscompatibleplasmonicwaveguidesforintrachipcommunication
AT thirumalaivenkatesan thedesignofcmoscompatibleplasmonicwaveguidesforintrachipcommunication
AT christiananijhuis thedesignofcmoscompatibleplasmonicwaveguidesforintrachipcommunication
AT soojinchua thedesignofcmoscompatibleplasmonicwaveguidesforintrachipcommunication
AT yanliu designofcmoscompatibleplasmonicwaveguidesforintrachipcommunication
AT luding designofcmoscompatibleplasmonicwaveguidesforintrachipcommunication
AT yucao designofcmoscompatibleplasmonicwaveguidesforintrachipcommunication
AT dongyangwan designofcmoscompatibleplasmonicwaveguidesforintrachipcommunication
AT guanghuiyuan designofcmoscompatibleplasmonicwaveguidesforintrachipcommunication
AT baohuhuang designofcmoscompatibleplasmonicwaveguidesforintrachipcommunication
AT aaronvoonyewthean designofcmoscompatibleplasmonicwaveguidesforintrachipcommunication
AT tingmei designofcmoscompatibleplasmonicwaveguidesforintrachipcommunication
AT thirumalaivenkatesan designofcmoscompatibleplasmonicwaveguidesforintrachipcommunication
AT christiananijhuis designofcmoscompatibleplasmonicwaveguidesforintrachipcommunication
AT soojinchua designofcmoscompatibleplasmonicwaveguidesforintrachipcommunication