MAH-YOLO: an enhanced YOLOv8n framework for loess landslide detection with multi-attention mechanisms
The Loess Plateau, with its fragile ecological environment and frequent landslides, poses severe risks to both ecological safety and human life. Accurate and efficient landslide detection is essential for disaster prevention and sustainable regional development. This study proposes an enhanced targe...
Salvato in:
| Autori principali: | Yuan Liang, Zhe Chen, Zhengbo Yu, Zhong Wang, Qingyun Ji, Ziqiong He, Dongsheng Zhong, Zhongchang Sun, Huadong Guo |
|---|---|
| Natura: | Articolo |
| Lingua: | inglese |
| Pubblicazione: |
Taylor & Francis Group
2025-12-01
|
| Serie: | International Journal of Digital Earth |
| Soggetti: | |
| Accesso online: | https://www.tandfonline.com/doi/10.1080/17538947.2025.2536666 |
| Tags: |
Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!
|
Documenti analoghi
Documenti analoghi
-
A mah jong handbook : how to play, score, and win the modern game /
di: Whitney, Eleanor Noss
Pubblicazione: (1986) -
Multi-Sensor Remote Sensing for Early Identification of Loess Landslide Hazards: A Comprehensive Approach
di: Jinyuan Mao, et al.
Pubblicazione: (2025-06-01) -
Unraveling the hydraulic properties of loess for landslide prediction: A study on variations in loess landslides in Lanzhou, Dingxi, and Tianshui, China
di: Gao-chao Lin, et al.
Pubblicazione: (2024-04-01) -
Enhancing UAV Object Detection in Low-Light Conditions with ELS-YOLO: A Lightweight Model Based on Improved YOLOv11
di: Tianhang Weng, et al.
Pubblicazione: (2025-07-01) -
YOLO-WAS: A Lightweight Apple Target Detection Method Based on Improved YOLO11
di: Xinwu Du, et al.
Pubblicazione: (2025-07-01)