Multi-Mycotoxin Analyses by UPLC-MS/MS in Wheat: The Situation in Belgium in 2023 and 2024

This work proposes an insight into the mycotoxins detected in wheat from the 2023 and 2024 harvests in Belgium and highlights the link between agronomic conditions and mycotoxin contamination. The study utilized samples from a Belgian trial network, covering nine locations in 2023 and eight in 2024,...

Full description

Saved in:
Bibliographic Details
Main Authors: Camille Jonard, Anne Chandelier, Damien Eylenbosch, Joke Pannecoucque, Bruno Godin, Caroline Douny, Marie-Louise Scippo, Sébastien Gofflot
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/14/13/2300
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work proposes an insight into the mycotoxins detected in wheat from the 2023 and 2024 harvests in Belgium and highlights the link between agronomic conditions and mycotoxin contamination. The study utilized samples from a Belgian trial network, covering nine locations in 2023 and eight in 2024, ensuring diverse pedoclimatic contexts and including 11 different varieties. Sowing and harvest dates, previous crops and meteorological data were collected for these locations. A validated UPLC-MS/MS multi-mycotoxin method able to detect 20 mycotoxins, regulated or not, was used. Deoxynivalenol, zearalenone, and enniatins B and B1 were detected in the 2023 and 2024 samples. Enniatin A1 was only detected in the 2024 samples. Mycotoxin contamination was higher in 2024 compared to 2023, in terms of both the number of contaminated samples and the contamination levels. Enniatins B and B1, non-regulated mycotoxins, were widely detected in the 2024 wheat samples, with enniatin B detected in 68 out 88 samples ranging from 12 to 488 µg/kg. Differences between the wheat varieties were observed, with some varieties showing significantly higher contamination. Additionally, geographic location appeared to influence contamination levels, which could be related to previous crops or meteorological events. In conclusion, this research provides a comprehensive analysis of mycotoxin co-contamination in wheat samples from diverse pedoclimatic contexts in Belgium based over 2 years. It shows the importance of weather conditions on mycotoxin contamination. It also emphasizes the importance of variety selection to manage mycotoxin contamination.
ISSN:2304-8158