Magnetopause Boundary Detection Based on a Deep Image Prior Model Using Simulated Lobster-Eye Soft X-Ray Images
This study focuses on the problem of identifying and extracting the magnetopause boundary of the Earth’s magnetosphere using the Soft X-ray Imager (SXI) onboard the Solar Wind Magnetosphere Ionosphere Link Explorer (SMILE) mission. The SXI employs lobster-eye optics to perform panoramic imaging of t...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/17/14/2348 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study focuses on the problem of identifying and extracting the magnetopause boundary of the Earth’s magnetosphere using the Soft X-ray Imager (SXI) onboard the Solar Wind Magnetosphere Ionosphere Link Explorer (SMILE) mission. The SXI employs lobster-eye optics to perform panoramic imaging of the magnetosphere based on the Solar Wind Charge Exchange (SWCX) mechanism. However, several factors are expected to hinder future in-orbit observations, including the intrinsically low signal-to-noise ratio (SNR) of soft-X-ray emission, pronounced vignetting, and the non-uniform effective-area distribution of lobster-eye optics. These limitations could severely constrain the accurate interpretation of magnetospheric structures—especially the magnetopause boundary. To address these challenges, a boundary detection approach is developed that combines image calibration with denoising based on deep image prior (DIP). The method begins with calibration procedures to correct for vignetting and effective area variations in the SXI images, thereby restoring the accurate brightness distribution and improving spatial uniformity. Subsequently, a DIP-based denoising technique is introduced, which leverages the structural prior inherent in convolutional neural networks to suppress high-frequency noise without pretraining. This enhances the continuity and recognizability of boundary structures within the image. Experiments use ideal magnetospheric images generated from magnetohydrodynamic (MHD) simulations as reference data. The results demonstrate that the proposed method significantly improves the accuracy of magnetopause boundary identification under medium and high solar wind number density conditions (N = 10–20 cm<sup>−3</sup>). The extracted boundary curves consistently achieve a normalized mean squared error (NMSE) below 0.05 compared to the reference models. Additionally, the DIP-processed images show notable improvements in peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM), indicating enhanced image quality and structural fidelity. This method provides adequate technical support for the precise extraction of magnetopause boundary structures in soft X-ray observations and holds substantial scientific and practical value. |
---|---|
ISSN: | 2072-4292 |