A Novel Structural Vibration Sensing Approach Based on a Miniaturized Inertial Measurement Unit
Active or semi-active vibration control systems require real-time vibration information from controlled structures as feedback. However, integrating vibration sensors into some controlled structures remains a challenge due to factors such as mass and signal lines. This issue is particularly prominen...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/25/13/3958 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Active or semi-active vibration control systems require real-time vibration information from controlled structures as feedback. However, integrating vibration sensors into some controlled structures remains a challenge due to factors such as mass and signal lines. This issue is particularly prominent in attachment structures located far from the spacecraft, such as robotic arms and solar panels. This paper presents a miniaturized autonomous inertial sensor that can be easily attached to the controlled structure to acquire vibration data and wirelessly transmit the data. We also establish the relationship between cantilevered structural vibration and the inertial acceleration or angular velocity directly measured by the sensor. Consequently, the feedback information for the control system can be calculated by the processor in real-time. This autonomous inertial sensor consists of an inertial measurement unit (IMU) named BMI088 and a common wireless communication unit. An improved Extended Kalman Filter (EKF) algorithm is employed to enhance the quality of the sensing data in practical environments. The experimental results validated the theoretical model, indicating that the miniaturized inertial sensor effectively captures the bending vibration characteristics of the controlled structure. |
---|---|
ISSN: | 1424-8220 |