A Hybrid Content-Aware Network for Single Image Deraining
Rain streaks degrade the quality of optical images and seriously affect the effectiveness of subsequent vision-based algorithms. Although the applications of a convolutional neural network (CNN) and self-attention mechanism (SA) in single image deraining have shown great success, there are still unr...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Computers |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-431X/14/7/262 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rain streaks degrade the quality of optical images and seriously affect the effectiveness of subsequent vision-based algorithms. Although the applications of a convolutional neural network (CNN) and self-attention mechanism (SA) in single image deraining have shown great success, there are still unresolved issues regarding the deraining performance and the large computational load. The work in this paper fully coordinates and utilizes the advantages between CNN and SA and proposes a hybrid content-aware deraining network (CAD) to reduce complexity and generate high-quality results. Specifically, we construct the CADBlock, including the content-aware convolution and attention mixer module (CAMM) and the multi-scale double-gated feed-forward module (MDFM). In CAMM, the attention mechanism is used for intricate windows to generate abundant features and simple convolution is used for plain windows to reduce computational costs. In MDFM, multi-scale spatial features are double-gated fused to preserve local detail features and enhance image restoration capabilities. Furthermore, a four-token contextual attention module (FTCA) is introduced to explore the content information among neighbor keys to improve the representation ability. Both qualitative and quantitative validations on synthetic and real-world rain images demonstrate that the proposed CAD can achieve a competitive deraining performance. |
---|---|
ISSN: | 2073-431X |