Toxic Effects of p-Chloroaniline on Cells of Fungus <i>Isaria fumosorosea</i> SP535 and the Role of Cytochrome P450

Efficient methods to remediate PCA (p-chloroaniline)-polluted environments are urgent due to the widespread persistence and toxicity of PCA in the environment. Microbial degradation presents a promising approach for remediating PCA pollution. However, the PCA-degrading fungi still have yet to be exp...

Full description

Saved in:
Bibliographic Details
Main Authors: Shicong Huang, Jiahui Gao, Lin Zhou, Liujian Gao, Mengke Song, Qiaoyun Zeng
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Toxics
Subjects:
Online Access:https://www.mdpi.com/2305-6304/13/6/506
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Efficient methods to remediate PCA (p-chloroaniline)-polluted environments are urgent due to the widespread persistence and toxicity of PCA in the environment. Microbial degradation presents a promising approach for remediating PCA pollution. However, the PCA-degrading fungi still have yet to be explored. This study confirmed the highly PCA-degrading efficiency of an isolated fungus, <i>Isaria fumosorosea</i> SP535. This fungus can achieve a PCA degradation efficiency of 100% under optimal conditions characterized by an initial PCA concentration of 1.0 mM, pH of 7.0 and a temperature of 25 °C. SEM and TEM analyses revealed that the toxicity of PCA resulted in roughened surfaces of <i>Isaria fumosorosea</i> SP535 hyphae, voids in the cytoplasm, and thickened cell walls. PCA addition significantly elevated the activities of cytochrome P450 monooxygenase in both cell-free extracts and microsomal fractions in the media, suggesting the important role of the P450 system in PCA metabolization by <i>Isaria fumosorosea</i> SP535. The results provide a microbial resource and fundamental knowledge for addressing PCA pollution.
ISSN:2305-6304