A Meteorological Data-Driven eLoran Signal Propagation Delay Prediction Model: BP Neural Network Modeling for Long-Distance Scenarios
The timing accuracy of eLoran systems is susceptible to meteorological fluctuations, with medium-to-long-range propagation delay variations reaching hundreds of nanoseconds to microseconds. While conventional models have been widely adopted for short-range delay prediction, they fail to accurately c...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/17/13/2269 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The timing accuracy of eLoran systems is susceptible to meteorological fluctuations, with medium-to-long-range propagation delay variations reaching hundreds of nanoseconds to microseconds. While conventional models have been widely adopted for short-range delay prediction, they fail to accurately characterize the coupled effects of multiple factors in long-range scenarios. This study theoretically examines the influence mechanisms of temperature, humidity, and atmospheric pressure on signal propagation delays, proposing a hybrid prediction model integrating meteorological data with a back-propagation neural network (BPNN) through path-weighted Pearson correlation coefficient analysis. Long-term observational data from multiple differential reference stations and meteorological stations reveal that short-term delay fluctuations strongly correlate with localized instantaneous humidity variations, whereas long-term trends are governed by cumulative temperature–humidity effects in regional environments. A multi-tier neural network architecture was developed, incorporating spatial analysis of propagation distance impacts on model accuracy. Experimental results demonstrate enhanced prediction stability in long-range scenarios. The proposed model provides an innovative tool for eLoran system delay correction, while establishing an interdisciplinary framework that bridges meteorological parameters with signal propagation characteristics. This methodology offers new perspectives for reliable timing solutions in global navigation satellite system (GNSS)-denied environments and advances our understanding of meteorological–electromagnetic wave interactions. |
---|---|
ISSN: | 2072-4292 |