Towards More Automated Airport Ground Operations Including Engine-Off Taxiing Techniques Within the Auto-Steer Taxi at AIRport (ASTAIR) Project

This paper discusses SESAR’s Auto-Steer Taxi at Airport (ASTAIR) project, which seeks to advance airport ground operations including engine-off taxiing to move towards sustainable airports. The ASTAIR concept integrates human–AI teaming to optimize aircraft movement from gates to runways, with the p...

Full description

Saved in:
Bibliographic Details
Main Authors: Jérémie Garcia, Dong-Bach Vo, Anke Brock, Vincent Peyruqueou, Alexandre Battut, Mathieu Cousy, Vladimíra Čanádyová, Alexei Sharpanskykh, Gülçin Ermiş
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Engineering Proceedings
Subjects:
Online Access:https://www.mdpi.com/2673-4591/90/1/15
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper discusses SESAR’s Auto-Steer Taxi at Airport (ASTAIR) project, which seeks to advance airport ground operations including engine-off taxiing to move towards sustainable airports. The ASTAIR concept integrates human–AI teaming to optimize aircraft movement from gates to runways, with the primary objectives of improving predictability, efficiency, and environmental sustainability at large airports. Building on previous initiatives such as SESAR’s AEON, ASTAIR brings high-level automation to tasks like autonomous taxiing and vehicle routing. The system assists operators by calculating conflict-free routes for vehicles and dynamically adjusting operations based on real-time data. Based on workshops with several stakeholders, we describe the operational challenges involved in implementing ASTAIR, including managing parking stand availability and adapting to unforeseen events. A significant challenge highlighted is the human–automation partnership, where AI plays a supportive role but humans retain control over critical decisions, particularly in cases of system failure. The need for clear and consistent collaboration between AI and human operators is emphasized to ensure safety, efficiency, and improved compliance with take-off schedules, which in turn facilitates in-flight optimization.
ISSN:2673-4591