Exact spin correlators of integrable quantum circuits from algebraic geometry

We calculate the correlation functions of strings of spin operators for integrable quantum circuits exactly. These observables can be used for the calibration of quantum simulation platforms. We use the algebraic Bethe Ansatz, in combination with computational algebraic geometry, to obtain analytic...

Full description

Saved in:
Bibliographic Details
Main Author: Arthur Hutsalyuk, Yunfeng Jiang, Balazs Pozsgay, Hefeng Xu, Yang Zhang
Format: Article
Language:English
Published: SciPost 2025-07-01
Series:SciPost Physics
Online Access:https://scipost.org/SciPostPhys.19.1.003
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839645706591141888
author Arthur Hutsalyuk, Yunfeng Jiang, Balazs Pozsgay, Hefeng Xu, Yang Zhang
author_facet Arthur Hutsalyuk, Yunfeng Jiang, Balazs Pozsgay, Hefeng Xu, Yang Zhang
author_sort Arthur Hutsalyuk, Yunfeng Jiang, Balazs Pozsgay, Hefeng Xu, Yang Zhang
collection DOAJ
description We calculate the correlation functions of strings of spin operators for integrable quantum circuits exactly. These observables can be used for the calibration of quantum simulation platforms. We use the algebraic Bethe Ansatz, in combination with computational algebraic geometry, to obtain analytic results for medium-size (around 10-20 qubits) quantum circuits. The results are rational functions of the quantum circuit parameters. We obtain analytic results for such correlation functions both in the real space and Fourier space. In the real space, we analyze the short time and long time limits of the correlation functions. In Fourier space, we obtain analytic results in different parameter regimes, which exhibit qualitatively different behaviors. Using these analytic results, one can easily generate numerical data to arbitrary precision.
format Article
id doaj-art-b6e0bff1caa74b5b933a8a110ef7e43c
institution Matheson Library
issn 2542-4653
language English
publishDate 2025-07-01
publisher SciPost
record_format Article
series SciPost Physics
spelling doaj-art-b6e0bff1caa74b5b933a8a110ef7e43c2025-07-01T12:26:13ZengSciPostSciPost Physics2542-46532025-07-0119100310.21468/SciPostPhys.19.1.003Exact spin correlators of integrable quantum circuits from algebraic geometryArthur Hutsalyuk, Yunfeng Jiang, Balazs Pozsgay, Hefeng Xu, Yang ZhangWe calculate the correlation functions of strings of spin operators for integrable quantum circuits exactly. These observables can be used for the calibration of quantum simulation platforms. We use the algebraic Bethe Ansatz, in combination with computational algebraic geometry, to obtain analytic results for medium-size (around 10-20 qubits) quantum circuits. The results are rational functions of the quantum circuit parameters. We obtain analytic results for such correlation functions both in the real space and Fourier space. In the real space, we analyze the short time and long time limits of the correlation functions. In Fourier space, we obtain analytic results in different parameter regimes, which exhibit qualitatively different behaviors. Using these analytic results, one can easily generate numerical data to arbitrary precision.https://scipost.org/SciPostPhys.19.1.003
spellingShingle Arthur Hutsalyuk, Yunfeng Jiang, Balazs Pozsgay, Hefeng Xu, Yang Zhang
Exact spin correlators of integrable quantum circuits from algebraic geometry
SciPost Physics
title Exact spin correlators of integrable quantum circuits from algebraic geometry
title_full Exact spin correlators of integrable quantum circuits from algebraic geometry
title_fullStr Exact spin correlators of integrable quantum circuits from algebraic geometry
title_full_unstemmed Exact spin correlators of integrable quantum circuits from algebraic geometry
title_short Exact spin correlators of integrable quantum circuits from algebraic geometry
title_sort exact spin correlators of integrable quantum circuits from algebraic geometry
url https://scipost.org/SciPostPhys.19.1.003
work_keys_str_mv AT arthurhutsalyukyunfengjiangbalazspozsgayhefengxuyangzhang exactspincorrelatorsofintegrablequantumcircuitsfromalgebraicgeometry