AI-Driven Handover Management and Load Balancing Optimization in Ultra-Dense 5G/6G Cellular Networks

This paper presents a comprehensive review of handover management and load balancing optimization (LBO) in ultra-dense 5G and emerging 6G cellular networks. With the increasing deployment of small cells and the rapid growth of data traffic, these networks face significant challenges in ensuring seam...

Full description

Saved in:
Bibliographic Details
Main Authors: Chaima Chabira, Ibraheem Shayea, Gulsaya Nurzhaubayeva, Laura Aldasheva, Didar Yedilkhan, Saule Amanzholova
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Technologies
Subjects:
Online Access:https://www.mdpi.com/2227-7080/13/7/276
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a comprehensive review of handover management and load balancing optimization (LBO) in ultra-dense 5G and emerging 6G cellular networks. With the increasing deployment of small cells and the rapid growth of data traffic, these networks face significant challenges in ensuring seamless mobility and efficient resource allocation. Traditional handover and load balancing techniques, primarily designed for 4G systems, are no longer sufficient to address the complexity of heterogeneous network environments that incorporate millimeter-wave communication, Internet of Things (IoT) devices, and unmanned aerial vehicles (UAVs). The review focuses on how recent advances in artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL), are being applied to improve predictive handover decisions and enable real-time, adaptive load distribution. AI-driven solutions can significantly reduce handover failures, latency, and network congestion, while improving overall user experience and quality of service (QoS). This paper surveys state-of-the-art research on these techniques, categorizing them according to their application domains and evaluating their performance benefits and limitations. Furthermore, the paper discusses the integration of intelligent handover and load balancing methods in smart city scenarios, where ultra-dense networks must support diverse services with high reliability and low latency. Key research gaps are also identified, including the need for standardized datasets, energy-efficient AI models, and context-aware mobility strategies. Overall, this review aims to guide future research and development in designing robust, AI-assisted mobility and resource management frameworks for next-generation wireless systems.
ISSN:2227-7080