Toeplitz Operators with Radial Symbols on Weighted Pluriharmonic Bergman Spaces over Reinhardt Domains

In this paper, we design an operator <i>A</i> restricted to a weighted pluriharmonic Bergman space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>b</mi><mi>...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhi-Ling Sun, Feng Qi, Wei-Shih Du
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/6/478
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we design an operator <i>A</i> restricted to a weighted pluriharmonic Bergman space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>b</mi><mi>μ</mi><mn>2</mn></msubsup><mrow><mo>(</mo><mi mathvariant="normal">Ω</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> over the Reinhardt domains, with an isometric isomorphism between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>b</mi><mi>μ</mi><mn>2</mn></msubsup><mrow><mo>(</mo><mi mathvariant="normal">Ω</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and the subset of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>l</mi><mn>2</mn></msub><mrow><mo>(</mo><msup><mi mathvariant="double-struck">Z</mi><mi>n</mi></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Furthermore, we show that Toeplitz operators <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>a</mi></msub></semantics></math></inline-formula> with radial symbols are unitary to the multiplication operators <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mi>a</mi></msub><mi>I</mi></mrow></semantics></math></inline-formula> on sequence space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>l</mi><mn>2</mn></msub></semantics></math></inline-formula> by using the operator <i>A</i>. The Wick function of a Toeplitz operator with a radial symbol provides some features to the operator, establishing its spectral decomposition. Finally, we specify the obtained results on the Reinhardt domains for the unit ball.
ISSN:2075-1680