Fiber-Wireless and Fiber-IVLLC Convergences Based on MZM-OEO-Based BLS
Fiber-wireless and fiber-invisible laser light communication (IVLLC) convergences that adopt the Mach–Zehnder modulator-optoelectronic oscillator (MZM-OEO)-based broadband light source for microwave (MW)/millimeter-wave (MMW)/baseband (BB) signal transmission are proposed and demonstrated...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2016-01-01
|
Series: | IEEE Photonics Journal |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/7426720/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fiber-wireless and fiber-invisible laser light communication (IVLLC) convergences that adopt the Mach–Zehnder modulator-optoelectronic oscillator (MZM-OEO)-based broadband light source for microwave (MW)/millimeter-wave (MMW)/baseband (BB) signal transmission are proposed and demonstrated. For downlink transmission, light is optically promoted from 15- and 25-GHz radio-frequency (RF) signals to 10-Gb/s/30-GHz MW, 15-Gb/s/50-GHz MMW, 20-Gb/s/60-GHz MMW, and 25-Gb/s/100-GHz MMW data signals based on fiber-wireless and fiber-IVLLC integrations. Bit error rate (BER) performs efficiently in the 40-km single-mode fiber (SMF) and the 10-m RF/25-m optical wireless transport scenarios. For uplink transmission, downstream light is successfully intensity-modulated with a 25-Gb/s BB data stream based on fiber-IVLLC integration. BER performs efficiently in the 40-km SMF and the 100-m optical wireless transport scenario. Such a hybrid MW/MMW/BB lightwave transmission system is an attractive alternative. It is shown to be a prominent one to present advancements in integrating fiber backbone and radio-frequency (RF)/optical wireless feeder networks. |
---|---|
ISSN: | 1943-0655 |