A Real-Time Cotton Boll Disease Detection Model Based on Enhanced YOLOv11n

Existing methods for detecting cotton boll diseases frequently exhibit high rates of <b>both</b> false negatives and false positives under complex field conditions (e.g., lighting variations, shadows, and occlusions) and struggle to achieve real-time performance on edge devices. To addre...

Full description

Saved in:
Bibliographic Details
Main Authors: Lei Yang, Wenhao Cui, Jingqian Li, Guotao Han, Qi Zhou, Yubin Lan, Jing Zhao, Yongliang Qiao
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/14/8085
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Existing methods for detecting cotton boll diseases frequently exhibit high rates of <b>both</b> false negatives and false positives under complex field conditions (e.g., lighting variations, shadows, and occlusions) and struggle to achieve real-time performance on edge devices. To address these limitations, this study proposes an enhanced YOLOv11n model (YOLOv11n-ECS) for improved detection accuracy. A dataset of cotton boll diseases under different lighting conditions and shooting angles in the field was constructed. To mitigate false negatives and false positives encountered by the original YOLOv11n model during detection, the EMA (efficient multi-scale attention) mechanism is introduced to enhance the weights of important features and suppress irrelevant regions, thereby improving the detection accuracy of the model. Partial Convolution (PConv) is incorporated into the C3k2 module to reduce computational redundancy and lower the model’s computational complexity while maintaining high recognition accuracy. Furthermore, to enhance the localization accuracy of diseased bolls, the original CIoU loss is replaced with Shape-IoU. The improved model achieves floating point operations (FLOPs), parameter count, and model size at 96.8%, 96%, and 96.3% of the original YOLOv11n model, respectively. The improved model achieves an mAP@0.5 of 85.6% and an mAP@0.5:0.95 of 62.7%, representing improvements of 2.3 and 1.9 percentage points, respectively, over the baseline YOLOv11n model. Compared with CenterNet, Faster R-CNN, YOLOv8-LSW, MSA-DETR, DMN-YOLO, and YOLOv11n, the improved model shows mAP@0.5 improvements of 25.7, 21.2, 5.5, 4.0, 4.5, and 2.3 percentage points, respectively, along with corresponding mAP@0.5:0.95 increases of 25.6, 25.3, 8.3, 2.8, 1.8, and 1.9 percentage points. Deployed on a Jetson TX2 development board, the model achieves a recognition speed of 56 frames per second (FPS) and an mAP of 84.2%, confirming its suitability for real-time detection. Furthermore, the improved model effectively reduces instances of both false negatives and false positives for diseased cotton bolls while yielding higher detection confidence, thus providing robust technical support for intelligent cotton boll disease detection.
ISSN:2076-3417