Entry Guidance for Hypersonic Glide Vehicles via Two-Phase hp-Adaptive Sequential Convex Programming
This paper addresses the real-time trajectory generation problem for hypersonic glide vehicles (HGVs) during atmospheric entry, subject to complex constraints including aerothermal limits, actuator bounds, and no-fly zones (NFZs). To achieve efficient and reliable trajectory planning, a two-phase hp...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Aerospace |
Subjects: | |
Online Access: | https://www.mdpi.com/2226-4310/12/6/539 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper addresses the real-time trajectory generation problem for hypersonic glide vehicles (HGVs) during atmospheric entry, subject to complex constraints including aerothermal limits, actuator bounds, and no-fly zones (NFZs). To achieve efficient and reliable trajectory planning, a two-phase hp-adaptive sequential convex programming (SCP) framework is proposed. NFZ avoidance is reformulated as a soft objective to enhance feasibility under tight geometric constraints. In Phase I, a shrinking-trust-region strategy progressively tightens the soft trust-region radius by increasing the penalty weight, effectively suppressing linearization errors. A sensitivity-driven mesh refinement method then allocates collocation points based on their contribution to the objective function. Phase II applies residual-based refinement to reduce discretization errors. The resulting reference trajectory is tracked using a linear quadratic regulator (LQR) within a reference-trajectory-tracking guidance (RTTG) architecture. Simulation results demonstrate that the proposed method achieves convergence in only a few iterations, generating high-fidelity trajectories within 2–3 s. Compared to pseudospectral solvers, the method achieves over 12× computational speed-up while maintaining kilometer-level accuracy. Monte Carlo tests under uncertainties confirm a 100% success rate, with all constraints satisfied. These results validate the proposed method’s robustness, efficiency, and suitability for onboard real-time entry guidance in dynamic mission environments. |
---|---|
ISSN: | 2226-4310 |