An Enhanced ABS Braking Control System with Autonomous Vehicle Stopping

This study explores the design and implementation of a control system integrating the anti-lock braking system (ABS) with frequency-modulated continuous wave (FMCW) radar technology to enhance safety and performance in autonomous vehicles. The proposed system employs a hybrid fuzzy logic controller...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohammed Fadhl Abdullah, Gehad Ali Qasem, Mazen Farid
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:World Electric Vehicle Journal
Subjects:
Online Access:https://www.mdpi.com/2032-6653/16/7/400
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study explores the design and implementation of a control system integrating the anti-lock braking system (ABS) with frequency-modulated continuous wave (FMCW) radar technology to enhance safety and performance in autonomous vehicles. The proposed system employs a hybrid fuzzy logic controller (FLC) and proportional-integral-derivative (PID) controller to improve braking efficiency and vehicle stability under diverse driving conditions. Simulation results showed significant enhancements in stopping performance across various road conditions. The integrated system exhibited a marked improvement in braking performance, achieving significantly shorter stopping distances across all evaluated surface conditions—including dry concrete, wet asphalt, snowy roads, and icy roads—compared with scenarios without ABS. These results highlight the system’s ability to dynamically adapt braking forces to different conditions, significantly improving safety and stability for autonomous vehicles. The limitations are acknowledged, and directions for real-world validation are outlined to ensure system robustness under diverse environmental conditions.
ISSN:2032-6653