AEA-YOLO: Adaptive Enhancement Algorithm for Challenging Environment Object Detection
Despite deep learning-based object detection techniques showing promising results, identifying items from low-quality images under unfavorable weather settings remains challenging because of balancing demands and overlooking useful latent information. On the other hand, YOLO is being developed for r...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | AI |
Subjects: | |
Online Access: | https://www.mdpi.com/2673-2688/6/7/132 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Despite deep learning-based object detection techniques showing promising results, identifying items from low-quality images under unfavorable weather settings remains challenging because of balancing demands and overlooking useful latent information. On the other hand, YOLO is being developed for real-time object detection, addressing limitations of current models, which struggle with low accuracy and high resource requirements. To address these issues, we provide an Adaptive Enhancement Algorithm YOLO (AEA-YOLO) framework that allows for an enhancement in each image for improved detection capabilities. A lightweight Parameter Prediction Network (PPN) containing only six thousand parameters predicts scene-adaptive coefficients for a differentiable Image Enhancement Module (IEM), and the enhanced image is then processed by a standard YOLO detector, called the Detection Network (DN). Adaptively processing images in both favorable and unfavorable weather conditions is possible with our suggested method. Extremely encouraging experimental results compared with existing models show that our suggested approach achieves 7% and more than 12% in mean average precision (mAP) on the PASCAL VOC Foggy artificially degraded and the Real-world Task-driven Testing Set (RTTS) datasets. Moreover, our approach achieves good results compared with other state-of-the-art and adaptive domain models of object detection in normal and challenging environments. |
---|---|
ISSN: | 2673-2688 |