Nuclear Magnetic Resonance in Tire Waste Mortars
This study aims to investigate the application of nuclear magnetic resonance (NMR) to characterize mortars containing recycled rubber waste as an eco-innovative material for sustainable construction. The primary objective was to analyze the way rubber granules influence hydration kinetics, microstru...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/15/12/6895 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study aims to investigate the application of nuclear magnetic resonance (NMR) to characterize mortars containing recycled rubber waste as an eco-innovative material for sustainable construction. The primary objective was to analyze the way rubber granules influence hydration kinetics, microstructural development and pore structure. The innovative mortar formulations incorporated rubber granules, casein, natural hydraulic lime (NHL), and latex. NMR analysis revealed distinct T<sub>2</sub> relaxation time distributions correlated with different pore sizes and water states: shorter T<sub>2</sub> values demonstrate strongly bound water in small pores, while longer T<sub>2</sub> values are associated with loosely bound or free water in larger pores. The formulation with 3.5% NHL and 5% rubber granules exhibited optimal microstructural characteristics. These results reveal that NMR is a valuable, non-destructive tool for monitoring cementitious material evolution and supporting the use of tire-derived waste in eco-innovative mortar designs. |
---|---|
ISSN: | 2076-3417 |