Rethinking Metaheuristics: Unveiling the Myth of “Novelty” in Metaheuristic Algorithms

In recent decades, the rapid development of metaheuristic algorithms has outpaced theoretical understanding, with experimental evaluations often overshadowing rigorous analysis. While nature-inspired optimization methods show promise for various applications, their effectiveness is often limited by...

Full description

Saved in:
Bibliographic Details
Main Authors: Chia-Hung Wang, Kun Hu, Xiaojing Wu, Yufeng Ou
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/13/2158
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent decades, the rapid development of metaheuristic algorithms has outpaced theoretical understanding, with experimental evaluations often overshadowing rigorous analysis. While nature-inspired optimization methods show promise for various applications, their effectiveness is often limited by metaphor-driven design, structural biases, and a lack of sufficient theoretical foundation. This paper systematically examines the challenges in developing robust, generalizable optimization techniques, advocating for a paradigm shift toward modular, transparent frameworks. A comprehensive review of the existing limitations in metaheuristic algorithms is presented, along with actionable strategies to mitigate biases and enhance algorithmic performance. Through emphasis on theoretical rigor, reproducible experimental validation, and open methodological frameworks, this work bridges critical gaps in algorithm design. The findings support adopting scientifically grounded optimization approaches to advance operational applications.
ISSN:2227-7390