Multi-Feature Long Short-Term Memory Facial Recognition for Real-Time Automated Drowsiness Observation of Automobile Drivers with Raspberry Pi 4
We developed a multi-feature drowsiness detection model employing eye aspect ratio (EAR), mouth aspect ratio (MAR), head pose angles (yaw, pitch, and roll), and a Raspberry Pi 4 for real-time applications. The model was trained on the NTHU-DDD dataset and optimized using long short-term memory (LSTM...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-05-01
|
Series: | Engineering Proceedings |
Subjects: | |
Online Access: | https://www.mdpi.com/2673-4591/92/1/52 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We developed a multi-feature drowsiness detection model employing eye aspect ratio (EAR), mouth aspect ratio (MAR), head pose angles (yaw, pitch, and roll), and a Raspberry Pi 4 for real-time applications. The model was trained on the NTHU-DDD dataset and optimized using long short-term memory (LSTM) deep learning algorithms implemented using TensorFlow version 2.14.0. The model enabled robust drowsiness detection at a rate of 10 frames per second (FPS). The system embedded with the model was constructed for live image capture. The camera placement was adjusted for optimal positioning in the system. Various features were determined under diverse conditions (day, night, and with and without glasses). After training, the model showed an accuracy of 95.23%, while the accuracy ranged from 91.81 to 95.82% in validation. In stationary and moving vehicles, the detection accuracy ranged between 51.85 and 85.71%. Single-feature configurations exhibited an accuracy of 51.85 to 72.22%, while in dual features, the accuracy ranged from 66.67 to 75%. An accuracy of 80.95 to 85.71% was attained with the integration of all features. Challenges in the drowsiness included diminished accuracy with MAR alone and delayed prediction during transitions from non-drowsy to drowsy status. These findings underscore the model’s applicability in detecting drowsiness while highlighting the necessity for refinement. Through algorithm optimization, dataset expansion, and the integration of additional features and feedback mechanisms, the model can be improved in terms of performance and reliability. |
---|---|
ISSN: | 2673-4591 |