Ab Initio Investigation on the Magnetic Moments, Magnetocrystalline Anisotropy and Curie Temperature of Fe<sub>2</sub>P-Based Magnets
Permanent magnetic materials are essential for technological applications, with the majority of available magnets being either ferrites or materials composed of critical rare-earth elements, such as well-known Nd<sub>2</sub>Fe<sub>14</sub>B. The binary Fe<sub>2</sub&...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Magnetism |
Subjects: | |
Online Access: | https://www.mdpi.com/2673-8724/5/2/14 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Permanent magnetic materials are essential for technological applications, with the majority of available magnets being either ferrites or materials composed of critical rare-earth elements, such as well-known Nd<sub>2</sub>Fe<sub>14</sub>B. The binary Fe<sub>2</sub>P material emerges as a promising candidate to address the performance gap, despite its relatively low Curie temperature <inline-formula><math display="inline"><semantics><msub><mi>T</mi><mi>C</mi></msub></semantics></math></inline-formula> of 214 K. In this study, density functional theory was employed to investigate the effect of Si and Co substitution on the magnetic moments, magnetocrystalline anisotropy energy (MAE) and Curie temperature in <inline-formula><math display="inline"><semantics><msub><mi>Fe</mi><mrow><mn>2</mn><mo>−</mo><mi>y</mi></mrow></msub></semantics></math></inline-formula>Co<sub><i>y</i></sub>P<sub>1−<i>x</i></sub>Si<sub><i>x</i></sub> compounds. Our findings indicate that Si substitution enhances magnetic moments due to the increase in 3<i>f</i>-3<i>f</i> and 3<i>f</i>-3<i>g</i> interaction energies, which also contribute to higher <inline-formula><math display="inline"><semantics><msub><mi>T</mi><mi>C</mi></msub></semantics></math></inline-formula> values. Conversely, Co substitution leads to a reduction in magnetic moments, attributable to the inherently lower magnetic moments of Co. In all examined cases of different Si concentrations, such as hexagonally structured <inline-formula><math display="inline"><semantics><msub><mi>Fe</mi><mrow><mn>2</mn><mo>−</mo><mi>y</mi></mrow></msub></semantics></math></inline-formula>Co<sub><i>y</i></sub>P, <inline-formula><math display="inline"><semantics><msub><mi>Fe</mi><mrow><mn>2</mn><mo>−</mo><mi>y</mi></mrow></msub></semantics></math></inline-formula>Co<sub><i>y</i></sub>P<sub>0.92</sub>Si<sub>0.08</sub> and <inline-formula><math display="inline"><semantics><msub><mi>Fe</mi><mrow><mn>2</mn><mo>−</mo><mi>y</mi></mrow></msub></semantics></math></inline-formula>Co<sub><i>y</i></sub>P<sub>0.84</sub>Si<sub>0.16</sub>, Co substitution increases the Curie temperatures by augmenting 3<i>g</i>-3<i>g</i> exchange interaction energies. Both Si and Co substitutions decrease the magnetocrystalline anisotropy energy, resulting in the loss of the easy magnetization direction at higher Co contents. However, higher Si concentrations appear to confer resilience against the loss. In summary, Si and Co substitutions effectively modify the investigated magnetic properties. Nonetheless, to preserve a high MAE, the extent of substitution should be optimized. |
---|---|
ISSN: | 2673-8724 |