Energy optimization induces predictive-coding properties in a multi-compartment spiking neural network model.

Predictive coding is a prominent theoretical framework for understanding hierarchical sensory processing in the brain, yet how it could be implemented in networks of cortical neurons is still unclear. While most existing studies have taken a hand-wiring approach to creating microcircuits that match...

Full description

Saved in:
Bibliographic Details
Main Authors: Mingfang Zhang, Raluca Chitic, Sander M Bohté
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2025-06-01
Series:PLoS Computational Biology
Online Access:https://doi.org/10.1371/journal.pcbi.1013112
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Predictive coding is a prominent theoretical framework for understanding hierarchical sensory processing in the brain, yet how it could be implemented in networks of cortical neurons is still unclear. While most existing studies have taken a hand-wiring approach to creating microcircuits that match experimental results, recent work in rate-based artificial neural networks revealed that suitable cortical connectivity might result from self-organisation given some fundamental computational principle, such as energy efficiency. As no corresponding approach has studied this in more plausible networks of spiking neurons, we here investigate whether predictive coding properties in a multi-compartment spiking neural network can emerge from energy optimisation. We find that a model trained with an energy objective in addition to a task-relevant objective is able to reconstruct internal representations given top-down expectation signals alone. Additionally, neurons in the energy-optimised model show differential responses to expected versus unexpected stimuli, qualitatively similar to experimental evidence for predictive coding. These findings indicate that predictive-coding-like behaviour might be an emergent property of energy optimisation, providing a new perspective on how predictive coding could be achieved in the cortex.
ISSN:1553-734X
1553-7358