Breast Cancer Image Classification Using Phase Features and Deep Ensemble Models

Breast cancer is a leading cause of mortality among women worldwide. Early detection is crucial for increasing patient survival rates. Artificial intelligence, particularly convolutional neural networks (CNNs), has enabled the development of effective diagnostic systems by digitally processing mammo...

Full description

Saved in:
Bibliographic Details
Main Authors: Edgar Omar Molina Molina, Victor H. Diaz-Ramirez
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/14/7879
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839616592696049664
author Edgar Omar Molina Molina
Victor H. Diaz-Ramirez
author_facet Edgar Omar Molina Molina
Victor H. Diaz-Ramirez
author_sort Edgar Omar Molina Molina
collection DOAJ
description Breast cancer is a leading cause of mortality among women worldwide. Early detection is crucial for increasing patient survival rates. Artificial intelligence, particularly convolutional neural networks (CNNs), has enabled the development of effective diagnostic systems by digitally processing mammograms. CNNs have been widely used for the classification of breast cancer in images, obtaining accurate results similar in many cases to those of medical specialists. This work presents a hybrid feature extraction approach for breast cancer detection that employs variants of EfficientNetV2 network and convenient image representation based on phase features. First, a region of interest (ROI) is extracted from the mammogram. Next, a three-channel image is created using the local phase, amplitude, and orientation features of the ROI. A feature vector is constructed for the processed mammogram using the developed CNN model. The size of the feature vector is reduced using simple statistics, achieving a redundancy suppression of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>99.65</mn><mo>%</mo></mrow></semantics></math></inline-formula>. The reduced feature vector is classified as either malignant or benign using a classifier ensemble. Experimental results using a training/testing ratio of 70/30 on 15,506 mammography images from three datasets produced an accuracy of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>86.28</mn><mo>%</mo></mrow></semantics></math></inline-formula>, a precision of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>78.75</mn><mo>%</mo></mrow></semantics></math></inline-formula>, a recall of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>86.14</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and an F1-score of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>80.09</mn><mo>%</mo></mrow></semantics></math></inline-formula> with the modified EfficientNetV2 model and stacking classifier. However, an accuracy of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>93.47</mn><mo>%</mo></mrow></semantics></math></inline-formula>, a precision of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>87.61</mn><mo>%</mo></mrow></semantics></math></inline-formula>, a recall of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>93.19</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and an F1-score of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>90.32</mn><mo>%</mo></mrow></semantics></math></inline-formula> were obtained using only CSAW-M dataset images.
format Article
id doaj-art-a7ed7e3188704fc7a56c210df9fcc3d0
institution Matheson Library
issn 2076-3417
language English
publishDate 2025-07-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj-art-a7ed7e3188704fc7a56c210df9fcc3d02025-07-25T13:12:37ZengMDPI AGApplied Sciences2076-34172025-07-011514787910.3390/app15147879Breast Cancer Image Classification Using Phase Features and Deep Ensemble ModelsEdgar Omar Molina Molina0Victor H. Diaz-Ramirez1Instituto Politécnico Nacional, CITEDI, Av. Instituto Politécnico Nacional 1310, Nueva Tijuana, Tijuana 22435, MexicoInstituto Politécnico Nacional, CITEDI, Av. Instituto Politécnico Nacional 1310, Nueva Tijuana, Tijuana 22435, MexicoBreast cancer is a leading cause of mortality among women worldwide. Early detection is crucial for increasing patient survival rates. Artificial intelligence, particularly convolutional neural networks (CNNs), has enabled the development of effective diagnostic systems by digitally processing mammograms. CNNs have been widely used for the classification of breast cancer in images, obtaining accurate results similar in many cases to those of medical specialists. This work presents a hybrid feature extraction approach for breast cancer detection that employs variants of EfficientNetV2 network and convenient image representation based on phase features. First, a region of interest (ROI) is extracted from the mammogram. Next, a three-channel image is created using the local phase, amplitude, and orientation features of the ROI. A feature vector is constructed for the processed mammogram using the developed CNN model. The size of the feature vector is reduced using simple statistics, achieving a redundancy suppression of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>99.65</mn><mo>%</mo></mrow></semantics></math></inline-formula>. The reduced feature vector is classified as either malignant or benign using a classifier ensemble. Experimental results using a training/testing ratio of 70/30 on 15,506 mammography images from three datasets produced an accuracy of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>86.28</mn><mo>%</mo></mrow></semantics></math></inline-formula>, a precision of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>78.75</mn><mo>%</mo></mrow></semantics></math></inline-formula>, a recall of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>86.14</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and an F1-score of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>80.09</mn><mo>%</mo></mrow></semantics></math></inline-formula> with the modified EfficientNetV2 model and stacking classifier. However, an accuracy of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>93.47</mn><mo>%</mo></mrow></semantics></math></inline-formula>, a precision of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>87.61</mn><mo>%</mo></mrow></semantics></math></inline-formula>, a recall of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>93.19</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and an F1-score of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>90.32</mn><mo>%</mo></mrow></semantics></math></inline-formula> were obtained using only CSAW-M dataset images.https://www.mdpi.com/2076-3417/15/14/7879breast cancer detectionphase image featuresconvolutional neural networks (CNNs)EfficientNetV2classifier ensembles
spellingShingle Edgar Omar Molina Molina
Victor H. Diaz-Ramirez
Breast Cancer Image Classification Using Phase Features and Deep Ensemble Models
Applied Sciences
breast cancer detection
phase image features
convolutional neural networks (CNNs)
EfficientNetV2
classifier ensembles
title Breast Cancer Image Classification Using Phase Features and Deep Ensemble Models
title_full Breast Cancer Image Classification Using Phase Features and Deep Ensemble Models
title_fullStr Breast Cancer Image Classification Using Phase Features and Deep Ensemble Models
title_full_unstemmed Breast Cancer Image Classification Using Phase Features and Deep Ensemble Models
title_short Breast Cancer Image Classification Using Phase Features and Deep Ensemble Models
title_sort breast cancer image classification using phase features and deep ensemble models
topic breast cancer detection
phase image features
convolutional neural networks (CNNs)
EfficientNetV2
classifier ensembles
url https://www.mdpi.com/2076-3417/15/14/7879
work_keys_str_mv AT edgaromarmolinamolina breastcancerimageclassificationusingphasefeaturesanddeepensemblemodels
AT victorhdiazramirez breastcancerimageclassificationusingphasefeaturesanddeepensemblemodels