Assessment of Knot-Induced Degradation in Timber Beams: Probabilistic Modeling and Data-Driven Prediction of Load Capacity Loss

Timber structural performance is significantly influenced by natural knots, which serve as critical indicators in ancient architectural heritage preservation and modern sustainable building design. However, existing studies lack a comprehensive quantitative analysis of how the randomness of timber k...

Full description

Saved in:
Bibliographic Details
Main Authors: Peixuan Wang, Guoming Liu, Fanrong Li, Shengcai Li, Gabriele Milani, Donato Abruzzese
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/15/12/2058
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Timber structural performance is significantly influenced by natural knots, which serve as critical indicators in ancient architectural heritage preservation and modern sustainable building design. However, existing studies lack a comprehensive quantitative analysis of how the randomness of timber knot parameters relates to load-bearing capacity degradation. This study introduces a multiscale evaluation framework that integrates physical testing, probabilistic modeling, and data-driven techniques. Firstly, static tests on full-scale timber beams with artificially introduced knots reveal the failure mechanisms and load capacity reduction associated with knots in the tension zone. Subsequently, a three-dimensional Monte Carlo simulation, modeling random distributions of knot position and size, demonstrates that the midspan region is most sensitive to knot effects, with load capacity loss being more pronounced on the tension side than on the compression side. Finally, a predictive model based on a fully connected neural network is developed; feature analysis indicates that the longitudinal position of knots exerts a stronger nonlinear influence on load capacity than radial depth or diameter. The results establish a mapping between knot characteristics, stress field distortion, and ultimate load capacity, providing a theoretical basis for safety evaluation of historic timber structures and the design of defect-tolerant timber beams in modern engineering.
ISSN:2075-5309