A Review of Key Signal Processing Techniques for Structural Health Monitoring: Highlighting Non-Parametric Time-Frequency Analysis, Adaptive Decomposition, and Deconvolution

This paper reviews key signal processing techniques in structural health monitoring (SHM), focusing on non-parametric time–frequency analysis, adaptive decomposition, and deconvolution methods. It examines the short-time Fourier transform (STFT), wavelet transform (WT), and Wigner–Ville distribution...

Full description

Saved in:
Bibliographic Details
Main Authors: Yixin Zhou, Zepeng Ma, Lei Fu
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/18/6/318
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper reviews key signal processing techniques in structural health monitoring (SHM), focusing on non-parametric time–frequency analysis, adaptive decomposition, and deconvolution methods. It examines the short-time Fourier transform (STFT), wavelet transform (WT), and Wigner–Ville distribution (WVD), highlighting their applications, advantages, and limitations in SHM. The review also explores adaptive techniques like empirical mode decomposition (EMD) and its variants (EEMD, MEEMD), as well as variational mode decomposition (VMD) and its improved versions (SVMD, AVMD), emphasizing their effectiveness in handling nonlinear and non-stationary signals. Additionally, deconvolution methods such as minimum entropy deconvolution (MED) and maximum correlated kurtosis deconvolution (MCKD) are discussed for mechanical fault diagnosis. The paper aims to provide a comprehensive overview of these techniques, offering insights for future research into SHM signal processing.
ISSN:1999-4893