Echo Chambers and Homophily in the Diffusion of Risk Information on Social Media: The Case of Genetically Modified Organisms (GMOs)
This study investigates the mechanisms underlying the diffusion of risk information about genetically modified organisms (GMOs) on the Chinese social media platform Weibo. Drawing upon social contagion theory, we examine how endogenous and exogenous mechanisms shape users’ information-sharing behavi...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/27/7/699 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study investigates the mechanisms underlying the diffusion of risk information about genetically modified organisms (GMOs) on the Chinese social media platform Weibo. Drawing upon social contagion theory, we examine how endogenous and exogenous mechanisms shape users’ information-sharing behaviors. An analysis of 388,722 reposts from 2444 original GMO risk-related texts enabled the construction of a comprehensive sharing network, with computational text-mining techniques employed to detect users’ attitudes toward GMOs. To bridge the gap between descriptive and inferential network analysis, we employ a Shannon entropy-based approach to quantify the uncertainty and concentration of attitudinal differences and similarities among sharing and non-sharing dyads, providing an information-theoretic foundation for understanding positional and differential homophily. The entropy-based analysis reveals that information-sharing ties are characterized by lower entropy in attitude differences, indicating greater attitudinal alignment among sharing users, especially among GMO opponents. Building on these findings, the Exponential Random Graph Model (ERGM) further demonstrates that both endogenous network mechanisms (reciprocity, preferential attachment, and triadic closure) and positional homophily influence GMO risk information sharing and dissemination. A key finding is the presence of a differential homophily effect, where GMO opponents exhibit stronger homophilic tendencies than non-opponents. Despite the prevalence of homophily, this paper uncovers substantial cross-attitude interactions, challenging simplistic notions of echo chambers in GMO risk communication. By integrating entropy and ERGM analyses, this study advances a more nuanced, information-theoretic understanding of how digital platforms mediate public perceptions and debates surrounding controversial socio-scientific issues, offering valuable implications for developing effective risk communication strategies in increasingly polarized online spaces. |
---|---|
ISSN: | 1099-4300 |